Visuovestibular perception of self-motion modeled as a dynamic optimization process.

Biol Cybern

RENAULT Research Department, Technocentre Renault, 1 avenue du Golf, 78288 Guyancourt, France.

Published: October 2002

This article describes a computational model for the sensory perception of self-motion, considered as a compromise between sensory information and physical coherence constraints. This compromise is realized by a dynamic optimization process minimizing a set of cost functions. Measure constraints are expressed as quadratic errors between motion estimates and corresponding sensory signals, using internal models of sensor transfer functions. Coherence constraints are expressed as quadratic errors between motion estimates, and their prediction is based on internal models of the physical laws governing the corresponding physical stimuli. This general scheme leads to a straightforward representation of fundamental sensory interactions (fusion of visual and canal rotational inputs, identification of the gravity component from the otolithic input, otolithic contribution to the perception of rotations, and influence of vection on the subjective vertical). The model is tuned and assessed using a range of well-known psychophysical results, including off-vertical axis rotations and centrifuge experiments. The ability of the model to predict and help analyze new situations is illustrated by a study of the vestibular contributions to self-motion perception during automobile driving and during acceleration cueing in driving simulators. The extendable structure of the model allows for further developments and applications, by using other cost functions representing additional sensory interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00422-002-0357-7DOI Listing

Publication Analysis

Top Keywords

perception self-motion
8
dynamic optimization
8
optimization process
8
coherence constraints
8
cost functions
8
constraints expressed
8
expressed quadratic
8
quadratic errors
8
errors motion
8
motion estimates
8

Similar Publications

Illusions of self-motion (vection) can be improved by adding global visual oscillation to patterns of optic flow. Here we examined whether adding apparent visual oscillation (based on four-stroke apparent motion-4SAM) also improves vection. This apparent vertical oscillation was added to self-motion displays simulating constant velocity leftward self-motion.

View Article and Find Full Text PDF

Background: Vestibular dysfunction causing imbalance affects c. 80% of acute hospitalized traumatic brain injury (TBI) cases. Poor balance recovery is linked to worse return-to-work rates and reduced longevity.

View Article and Find Full Text PDF

Lightly touching a solid object reduces postural sway. Here, we determine the effect of artificially modifying haptic feedback for balance. Participants stood with their eyes closed, lightly gripping a manipulandum that moved synchronously with body sway to systematically enhance or attenuate feedback gain between +2 and -2, corresponding to motion in the same or opposite direction to the body, respectively.

View Article and Find Full Text PDF

The integration of different sensory streams is required to dynamically estimate how our head and body are oriented and moving relative to gravity. This process is essential to continuously maintain stable postural control, autonomic regulation, and self-motion perception. The nodulus/uvula (NU) in the posterior cerebellar vermis is known to integrate canal and otolith vestibular input to signal angular and linear head motion in relation to gravity.

View Article and Find Full Text PDF

Perceiving inter-leg speed differences while walking on a split-belt treadmill.

Sci Rep

January 2025

Cognitive Systems Lab, Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126, Chemnitz, Germany.

Walking is one of the most common forms of self-motion in humans. Most humans can walk effortlessly over flat uniform terrain, but also a variety of more challenging surfaces, as they adjust their gait to the demands of the terrain. In this, they rely in part on the perception of their own gait and of when it needs to be adjusted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!