With breakpoint distance, the genome rearrangement field delivered one of the currently most popular measures in phylogenetic studies for related species. Here, BREAKPOINT MEDIAN, which is NP-complete already for three given species (whose genomes are represented as signed orderings), is the core basic problem. For the important special case of three species, approximation (ratio 7/6) and exact heuristic algorithms were developed. Here, we provide an exact, fixed-parameter algorithm with provable performance bounds. For instance, a breakpoint median for three signed orderings over nelements that causes at most d breakpoints can be computed in time O((2.15)(d).n). We show the algorithm's practical usefulness through experimental studies. In particular, we demonstrate that a simple implementation of our algorithm combined with a new tree construction heuristic allows for a new approach to breakpoint phylogeny, yielding evolutionary trees that are competitive in comparison with known results developed in a recent series of papers that use clever algorithm engineering methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/18.suppl_2.s128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!