Recent findings indicate a different role of the left and right hippocampal formation (RHF) in homing pigeon navigational map learning. However, it remains uncertain whether the left or the RHF may play a more important role in navigation based on familiar landmarks. In the present study, we attempted to answer this question by experimentally releasing control and left and right hippocampal ablated pigeons from familiar training sites under anosmia, to render their navigational map dysfunctional, and after a phase-shift of the light-dark cycle, to place into conflict a pilotage-like landmark navigational strategy and a site-specific compass orientation landmark navigational strategy. Both left and right hippocampal ablated birds succeeded in learning to navigate by familiar landmarks, and both preferentially relied on sun-compass based, site-specific compass orientation to home. Like bilateral hippocampal lesioned birds, and in contrast to intact controls, neither ablation group adopted a pilotage-like strategy. We conclude that both the left and RHF are necessary if pilotage-like, familiar landmark navigation is to be learned or preferentially used for navigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0166-4328(02)00125-0DOI Listing

Publication Analysis

Top Keywords

left hippocampal
12
familiar landmark
8
landmark navigation
8
navigational map
8
left rhf
8
familiar landmarks
8
hippocampal ablated
8
landmark navigational
8
navigational strategy
8
site-specific compass
8

Similar Publications

Objective: The vicious circle model of obesity proposes that the hippocampus plays a crucial role in food reward processing and obesity. However, few studies focused on whether and how pediatric obesity influences the potential direction of information exchange between the hippocampus and key regions, as well as whether these alterations in neural interaction could predict future BMI and eating behaviors.

Methods: In this longitudinal study, a total of 39 children with excess weight (overweight/obesity) and 51 children with normal weight, aged 8 to 12, underwent resting-state fMRI.

View Article and Find Full Text PDF

Several neurological conditions, including transient global amnesia (TGA), may present an isolated sudden-onset temporary amnestic symptom. TGA is a benign, self-remitting neurological condition associated with hippocampal dysfunction. Meanwhile, certain other neurological conditions, such as cerebral ischemic stroke and hippocampal epilepsy, require appropriate therapeutic interventions.

View Article and Find Full Text PDF

Background: Systemic lupus erythematosus (SLE) often presents with neuropsychiatric (NP) involvement, including cognitive impairment and depression. Past magnetic resonance imaging (MRI) research in SLE patients showed smaller hippocampal volumes but did not investigate other medial temporal lobe (MTL) regions. Our study aims to compare MTL subregional volumes in SLE patients to healthy individuals (HI) and explore MTL subregional volumes in relation to neuropsychiatric SLE (NPSLE) manifestations.

View Article and Find Full Text PDF

Background: The hippocampus has been widely reported to be involved in the neuropathology of major depressive disorder (MDD). All the previous researches adopted group-level hippocampus subregions atlas to investigate abnormal functional connectivities in MDD in absence of capturing individual variability. In addition, the molecular basis of functional impairments of hippocampal subregions in MDD remains elusive.

View Article and Find Full Text PDF

Background: Cognitive impairment (CI) is a condition in which an individual experiences noticeable impairment in thinking abilities. Long-term exposure to aluminum (Al) can cause CI. This study aimed to determine the relationship between CI and MRI-related changes in postroom workers exposed to Al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!