Cavity solitons are localized intensity peaks that can form in a homogeneous background of radiation. They are generated by shining laser pulses into optical cavities that contain a nonlinear medium driven by a coherent field (holding beam). The ability to switch cavity solitons on and off and to control their location and motion by applying laser pulses makes them interesting as potential 'pixels' for reconfigurable arrays or all-optical processing units. Theoretical work on cavity solitons has stimulated a variety of experiments in macroscopic cavities and in systems with optical feedback. But for practical devices, it is desirable to generate cavity solitons in semiconductor structures, which would allow fast response and miniaturization. The existence of cavity solitons in semiconductor microcavities has been predicted theoretically, and precursors of cavity solitons have been observed, but clear experimental realization has been hindered by boundary-dependence of the resulting optical patterns-cavity solitons should be self-confined. Here we demonstrate the generation of cavity solitons in vertical cavity semiconductor microresonators that are electrically pumped above transparency but slightly below lasing threshold. We show that the generated optical spots can be written, erased and manipulated as objects independent of each other and of the boundary. Numerical simulations allow for a clearer interpretation of experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature01049DOI Listing

Publication Analysis

Top Keywords

cavity solitons
32
cavity
9
semiconductor microcavities
8
solitons
8
laser pulses
8
solitons semiconductor
8
solitons pixels
4
semiconductor
4
pixels semiconductor
4
microcavities cavity
4

Similar Publications

Theory and application of cavity solitons in photonic devices.

Philos Trans A Math Phys Eng Sci

December 2024

SUPA and Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow, Scotland G4 0NG, UK.

Driven optical cavities containing a nonlinear medium support stable dissipative solitons, cavity solitons, in the form of bright or dark spots of light on a uniformly-lit background. Broadening effects due to diffraction or group velocity dispersion are balanced by the nonlinear interaction with the medium while cavity losses balance the input energy. The history, properties, physical interpretation and wide application of cavity solitons are reviewed.

View Article and Find Full Text PDF

We predict the existence of a novel type of temporal localized structure in injected Kerr-Gires-Tournois interferometers (KGTI). These bright pulses exist in the normal dispersion regime, yet they do not correspond to the usual scenario of domain wall locking that induces complex shape multistability, weak stability, and a reduced domain of existence. The new states are observed beyond the mean-field limit and out of the bistable region.

View Article and Find Full Text PDF

We demonstrated a dispersion-managed 2 µm ultrafast laser based on Tm:ZBLAN fiber. By controlling intracavity net dispersion using passive fibers, we observed soliton, stretched-pulse, and dissipative-soliton mode-locked operations. In particular, the broadest output spectrum with a bandwidth at 30 dB below the peak of 320 nm and a pulse duration of 61 fs were obtained at a net dispersion of -0.

View Article and Find Full Text PDF

Long-range interactions between dark vectorial temporal cavity solitons are induced by the formation of patterns via spontaneous symmetry breaking of orthogonally polarized fields in ring resonators. Turing patterns of alternating polarizations form between adjacent solitons, pushing them apart so that a random distribution of solitons along the cavity length spontaneously reaches equal equilibrium distances, the soliton crystal, without any mode crossing or external modulation. Enhancement of the frequency comb is achieved through the spontaneous formation of regularly spaced soliton crystals, 'self-crystallization', with greater power and spacing of the spectral lines for increasing soliton numbers.

View Article and Find Full Text PDF

Successful generation of ultrashort pulses in the spectral region of 920 nm using Nd-doped fibers requires effectively suppressing the dominant 1064 nm four-level transition. Utilizing a hybrid design incorporating a W-shaped double-clad Nd-doped fiber and a single-clad Nd-doped fiber together with filtering out parasitic 1.06 µm beam, we developed an oscillator capable of delivering ultrashort pulses at the central wavelength of 929 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!