The 3' end region of foot-and-mouth disease virus (FMDV) consists of two distinct elements, a 90 nt untranslated region (3'-NCR) and a poly(A) tract. Removal of either the poly(A) tract or both the 3'-NCR and the poly(A) tract abrogated infectivity in susceptible cells in the context of a full-length cDNA clone. We have addressed the question of whether the impairment of RNA infectivity is related to defects at the translation level using a double approach. First, compared to the full-length viral RNA, removal of the 3' sequences reduced the efficiency of translation in vitro. Secondly, a stimulatory effect of the 3' end sequences on IRES-dependent translation was found in vivo using bicistronic constructs. RNAs carrying the FMDV 3' end sequences linked to the second cistron showed a significant stimulation of IRES-dependent translation, whereas cap-dependent translation was not affected. Remarkably, IRES-dependent stimulation exerted by the poly(A) tract or the 3'-NCR seems to be the result of two separate events, as the 3'-NCR alone enhanced IRES activity on its own. Under conditions of FMDV Lb protease-induced translation shut-off, the stimulation of IRES activity reached values above 6-fold in living cells. A northern blot analysis indicated that IRES stimulation was not the consequence of a change in the stability of the bicistronic RNA produced in transfected cells. Analysis of the RNA-binding proteins interacting with a mixture of 3' end and IRES probes showed an additive pattern. Altogether, our results strongly suggest that individual signals in the viral 3' end ensure stimulation of FMDV translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC137133 | PMC |
http://dx.doi.org/10.1093/nar/gkf569 | DOI Listing |
elements are primate-specific retrotransposon sequences that comprise ∼11% of human genomic DNA. sequences contain an internal RNA polymerase III promoter and the resultant RNA transcripts mobilize by a replicative process termed retrotransposition. retrotransposition requires the Long INterspersed Element-1 (LINE-1) open reading frame 2-encoded protein (ORF2p).
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2025
Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
Background: Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and chronic kidney disease later in life. Prior work has implicated histone modifications in regulating kidney lineage-specific gene transcription and nephron endowment. Our earlier study suggested that ASH2L, a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development.
View Article and Find Full Text PDFViruses
May 2024
Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Tochigi 329-0498, Japan.
Hepatitis E virus (HEV) can cause self-limiting acute and chronic hepatitis infections, particularly in immunocompromised individuals. In developing countries, HEV is mainly transmitted via drinking contaminated water, whereas zoonotic transmission dominates the route of infection in developed countries, including Japan. Pigs are an important reservoir for HEV infection.
View Article and Find Full Text PDFNucleic Acids Res
July 2024
Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition.
View Article and Find Full Text PDFMol Cell
June 2024
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:
Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!