Granzyme K (GzmK) belongs to a family of trypsin-like serine proteases localized in electron dense cytoplasmic granules of activated natural killer and cytotoxic T-cells. Like the related granzymes A and B, GzmK can trigger DNA fragmentation and is involved in apoptosis. We expressed the Ser(195) --> Ala variant of human pro-GzmK in Escherichia coli, crystallized it, and determined its 2.2-A x-ray crystal structure. Pro-GzmK possesses a surprisingly rigid structure, which is most similar to activated serine proteases, in particular complement factor D, and not their proforms. The N-terminal peptide Met(14)-Ile(17) projects freely into solution and can be readily approached by cathepsin C, the natural convertase of pro-granzymes. The pre-shaped S1 pocket is occupied by the ion paired residues Lys(188B)-Asp(194) and is hence not available for proper substrate binding. The Ser(214)-Cys(220) segment, which normally provides a template for substrate binding, bulges out of the active site and is distorted. With analogy to complement factor D, we suggest that this strand will maintain its non-productive conformation in mature GzmK, mainly due to the unusual residues Gly(215), Glu(219), and Val(94). We hypothesize that GzmK is proteolytically active only toward specific, as yet unidentified substrates, which upon approach transiently induce a functional active-site conformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M207962200 | DOI Listing |
iScience
January 2025
School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.
Efficiently generating energetically stable crystal structures has long been a challenge in material design, primarily due to the immense arrangement of atoms in a crystal lattice. To facilitate the discovery of stable materials, we present a framework for the generation of synthesizable materials leveraging a point cloud representation to encode intricate structural information. At the heart of this framework lies the introduction of a diffusion model as its foundational pillar.
View Article and Find Full Text PDFCurr Res Struct Biol
June 2025
The College of Health Humanities, Jinzhou Medical University, Jinzhou, 121001, China.
The change in the three-dimensional (3D) structure of a protein can affect its own function or interaction with other protein(s), which may lead to disease(s). Gene mutations, especially missense mutations, are the main cause of changes in protein structure. Due to the lack of protein crystal structure data, about three-quarters of human mutant proteins cannot be predicted or accurately predicted, and the pathogenicity of missense mutations can only be indirectly evaluated by evolutionary conservation.
View Article and Find Full Text PDFACS Omega
January 2025
Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.
The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
The structural stability of the energetic material 2,2',4,4',6,6'-hexanitrostilbene (-HNS) under high pressure is critical for optimizing its detonation performance and low sensitivity. However, its structural response to external pressure has not been sufficiently investigated. In this study, high-pressure single-crystal X-ray diffraction data of -HNS demonstrate that the sample exhibits pronounced anisotropic strain, demonstrating an unusual negative linear compressibility (NLC) along the axis, with a coefficient of -4.
View Article and Find Full Text PDFDalton Trans
January 2025
Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056002, P. R. China.
The isolation of a stable persistent carbazole-stabilized boron-centered monoradical anion 1˙, which has a high spin density at the B atom, has been reported. It is characterized using the crystal structure and UV-vis absorption spectrum, as well as electron paramagnetic resonance spectroscopy. Interestingly, the B-N bond was activated by the boron-centered radical anion 1˙, which had not been reported before.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!