Familial multiple coagulation factor deficiency (FMFD) of factors II, VII, IX, X, protein C, and protein S is a very rare bleeding disorder with autosomal recessive inheritance. The phenotypic presentation is variable with respect to the residual activities of the affected proteins, its response to oral administration of vitamin K, and to the involvement of skeletal abnormalities. The disease may result either from a defective resorption/transport of vitamin K to the liver, or from a mutation in one of the genes encoding gamma-carboxylase or other proteins of the vitamin K cycle. We have recently presented clinical details of a Lebanese family and a German family with 10 and 4 individuals, respectively, where we proposed autosomal recessive inheritance of the FMFD phenotype. Biochemical investigations of vitamin K components in patients' serum showed a significantly increased level of vitamin K epoxide, thus suggesting a defect in one of the subunits of the vitamin K 2,3-epoxide reductase (VKOR) complex. We now have performed a genome-wide linkage analysis and found significant linkage of FMFD to chromosome 16. A total maximum 2-point LOD score of 3.4 at theta = 0 was obtained in the interval between markers D16S3131 on 16p12 and D16S419 on 16q21. In both families, patients were autozygous for 26 and 28 markers, respectively, in an interval of 3 centimorgans (cM). Assuming that FMFD and warfarin resistance are allelic, conserved synteny between human and mouse linkage groups would restrict the candidate gene interval to the centromeric region of the short arm of chromosome 16.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2002-03-0698 | DOI Listing |
Biol Open
December 2024
Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France.
The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.
View Article and Find Full Text PDFNat Genet
January 2025
Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China.
Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and incomplete regions, resulting in a few common failures and errors in genomic studies. Here, we report a 2.85-Gb gap-free telomere-to-telomere genome of a ram (T2T-sheep1.
View Article and Find Full Text PDFClin Pediatr Endocrinol
January 2025
Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.
Solitary median maxillary central incisor (SMMCI) syndrome, the mildest form of the holoprosencephaly spectrum, is a rare anomaly characterized by the presence of a single midline central incisor in both the deciduous and permanent dentitions. Affected individuals can present with additional midline defects beyond dental findings. The 22q11.
View Article and Find Full Text PDFThe centromere effect (CE) is a meiotic phenomenon that ensures meiotic crossover suppression in pericentromeric regions. Despite being a critical safeguard against nondisjunction, the mechanisms behind the CE remain unknown. Previous studies have shown that various regions of the pericentromere, encompassing proximal euchromatin, beta and alpha heterochromatin, undergo varying levels of crossover suppression, raising the question of whether distinct mechanisms establish the CE in these different regions.
View Article and Find Full Text PDFNature
January 2025
Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3). Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres. Despite the high impact of 'centrophilic' retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!