Membrane-associated guanylate kinase (MAGUK) proteins are cell-cell contact organizing molecules that mediate targeting, clustering and anchoring of proteins at synapses and other cell junctions. MAGUK proteins may contain multiple protein-protein interaction motifs including PDZ, SH3 and guanylate kinase (GuK) domains. In this study, we performed a detailed analysis of the expression pattern of MPP4, a recently described member of the MAGUK protein family. We confirmed that this gene is highly expressed in retina, and demonstrate that it is also present, at lower levels, in brain. We identified a new retina specific isoform encoding a predicted protein lacking 71 amino acids. This protein region contains a newly identified L27 domain, another module playing a role in protein-protein interaction. By RNA in situ hybridization, Mpp4 expression was found to be localized to photoreceptor cells in postnatal retina. The MPP4 gene is localized to chromosome 2, in band 2q31-33, where a locus for autosomal recessive retinitis pigmentosa (RP26) has been mapped. Mutation analysis of the entire open reading frame of the MPP4 gene in a RP26 family revealed no pathologic mutations. In addition, we did not identify mutations in a panel of 300 unrelated patients with retinitis pigmentosa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(02)00872-7DOI Listing

Publication Analysis

Top Keywords

mpp4 gene
12
retinitis pigmentosa
12
gene highly
8
highly expressed
8
photoreceptor cells
8
mutation analysis
8
guanylate kinase
8
maguk proteins
8
protein-protein interaction
8
characterization mpp4
4

Similar Publications

Article Synopsis
  • WBP1L (also known as OPAL1) is a protein linked to better outcomes in childhood leukemia and is involved in regulating hematopoiesis and CXCR4 signaling.
  • Mice lacking WBP1L show dysregulated hematopoiesis, with enlarged thymi and increased thymocyte counts, likely due to the enhancement of multipotent progenitors in the bone marrow.
  • The study highlights WBP1L's role in maintaining hematopoietic stem cell functionality, influencing leukocyte progenitor growth, and improving outcomes during stem cell transplants.
View Article and Find Full Text PDF
Article Synopsis
  • Hematopoietic multipotent progenitors (MPPs) in the bone marrow can differentiate into various cell types, influenced by both intrinsic and extrinsic signals, with WHIM syndrome patients exhibiting an excess of myeloid cells due to CXCR4 signaling mutations.
  • Research using knock-in mice with WHIM-associated mutations showed that MPP4 cells, which usually develop into lymphoid cells, instead skewed towards myeloid differentiation due to increased mTOR signaling and altered oxidative phosphorylation.
  • Treatment with CXCR4 antagonist AMD3100 or mTOR inhibitor rapamycin reversed this myeloid bias, indicating that normal CXCR4 function is crucial for maintaining the lymphoid potential of MPP4 cells by regulating
View Article and Find Full Text PDF

The dynamics of the hematopoietic flux responsible for blood cell production in native conditions remains a matter of debate. Using CITE-seq analyses, we uncovered a distinct progenitor population that displays a cell cycle gene signature similar to the one found in quiescent hematopoietic stem cells. We further determined that the CD62L marker can be used to phenotypically enrich this population in the Flt3+ multipotent progenitor (MPP4) compartment.

View Article and Find Full Text PDF

Germline ETV6 mutation promotes inflammation and disrupts lymphoid development of early hematopoietic progenitors.

Exp Hematol

September 2022

Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA. Electronic address:

Germline mutations in ETV6 are associated with a syndrome of thrombocytopenia and leukemia predisposition, and ETV6 is among the most commonly mutated genes in leukemias, especially childhood B-cell acute lymphoblastic leukemia. However, the mechanisms underlying disease caused by ETV6 dysfunction are poorly understood. To address these gaps in knowledge, using CRISPR/Cas9, we developed a mouse model of the most common recurrent, disease-causing germline mutation in ETV6.

View Article and Find Full Text PDF

Intrinsic and extrinsic cues determine developmental trajectories of hematopoietic stem cells (HSCs) towards erythroid, myeloid and lymphoid lineages. Using two newly generated transgenic mice that report and trace the expression of terminal deoxynucleotidyl transferase (TdT), transient induction of TdT was detected on a newly identified multipotent progenitor (MPP) subset that lacked self-renewal capacity but maintained multilineage differentiation potential. TdT induction on MPPs reflected a transcriptionally dynamic but uncommitted stage, characterized by low expression of lineage-associated genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!