Buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis, induces oxidative cataracts following multiple injections into mice at 1 week of age. Cultures of lenses with (35)S-methionine have previously demonstrated altered patterns of protein biosynthesis that precede and accompany these cataracts. To obtain parallel information about changes in protein phosphorylation during cataract development, lenses from BSO-treated or control mouse pups were cultured for 3 hr at 37 degrees C with (32)P(i), homogenized in phosphate buffer, and resolved by centrifugation into water-soluble (WS) and water-insoluble (WI) fractions. These were characterized by 2D-gel electrophoresis, Coomassie blue staining, phosphorimaging, immunoblotting, and tandem mass spectrometry. Heaviest labelling was in the WI fraction. The labelled 2D-gel spots included: (1) a series of phosphorylated filensins at 95 kDa; (2) a major radioactive spot at 45-50 kDa, slightly anodic to actin and the beaded filament protein, phakinin (CP 49); (3) a phosphorylated betaB1-crystallin, considerably anodic to parent betaB1; (4) an acidic cluster of labelled alphaA-crystallins, phosphorylated in part at serine-148, and (5) a labelled trace alpha crystallin, slightly anodic to alphaB-crystallin. The results confirm previously reported phosphorylations of actin, phakinin, alphaA- and alphaB-crystallin, demonstrate previously unrecognized phosphorylations of filensin and betaB1-crystallin, and provide unequivocal evidence for phosphorylation of alphaA-crystallin at serine-148. The earliest changes in phosphorylation detected after BSO treatment were increased labelling of alphaA- and alphaB-crystallin during cataract stages 1-3, coupled with a general decrease in protein labelling. In stage 5 cataracts, phosphorylated alpha crystallins persisted as the dominant labelled species. However, the major modifications of alphaA-crystallin in advanced BSO cataracts were unlabelled and partially degraded, in contrast to phosphorylated alphaA. It is therefore proposed that phosphorylation of alphaA-crystallin may confer resistance to proteolytic degradation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

altered patterns
8
buthionine sulfoximine
8
alphaa- alphab-crystallin
8
phosphorylation alphaa-crystallin
8
phosphorylation
5
cataracts
5
phosphorylated
5
patterns phosphorylation
4
phosphorylation cultured
4
cultured mouse
4

Similar Publications

The existence of light QCD axions, whose mass depends on an additional free parameter, can lead to a new ground state of matter, where the sourced axion field reduces the nucleon effective mass. The presence of the axion field has structural consequences, in particular, it results in a thinner (or even prevents its existence) heat-blanketing envelope, significantly altering the cooling patterns of neutron stars. We exploit the anomalous cooling behavior to constrain previously uncharted regions of the axion parameter space by comparing model predictions with existing data from isolated neutron stars.

View Article and Find Full Text PDF

Exploratory analysis of gait mechanics in farmers.

J Occup Environ Hyg

January 2025

Department of Kinesiology & Health Promotion, University of Kentucky, Lexington, Kentucky.

Farmers may be at a higher risk of developing hip osteoarthritis (OA) due to the high demands of their occupation. To the authors' knowledge, the gait patterns of farmers that may be associated with hip joint degeneration have yet to be analyzed. Therefore, this study compares gait mechanics between farmers and non-farmers (controls).

View Article and Find Full Text PDF

Purpose: Continuous EEG (cEEG) monitoring is increasingly used in the management of neonates with seizures. There remains debate on what clinically relevant information can be gained from cEEG in neonates with suspected seizures, at high risk for seizures, or with definite seizures, as well as the use of cEEG for prognosis in a variety of conditions. In this guideline, we address these questions using American Clinical Neurophysiology Society structured methodology for clinical guideline development.

View Article and Find Full Text PDF

The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.

View Article and Find Full Text PDF

Background: Irritable Bowel Syndrome (IBS) is a prevalent condition characterized by dysregulated brain-gut interactions. Despite its widespread impact, the brain mechanism of IBS remains incompletely understood, and there is a lack of objective diagnostic criteria and biomarkers. This study aims to investigate brain network alterations in IBS patients using the functional connectivity strength (FCS) method and to develop a support vector machine (SVM) classifier for distinguishing IBS patients from healthy controls (HCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!