A quantitative model is provided of how current flow occurs in the media of blood vessels upon the release of transmitter from autonomic varicosities onto ionotropic receptors located on smooth muscle cells at the adventitial surface of the vessel. In particular, the extent to which potential generated in cells at the adventitial surface (AS) conducts through to cells at the intimal surface (IS) is investigated. Experimental tests of the model have been made for the case of the rat tail artery. The model of the media is an extension of the discrete bidomain syncytium to the case where the smooth muscle syncytium is bounded on two sides by a volume conductor, as is the case with the media of blood vessels. The amplitudes and temporal characteristics of excitatory junction potentials (EJPs), recorded throughout this syncytium following the release of ATP from varicosities located on one side of the syncytium, are predicted by the theory. Current injection into a single cell at the AS will not give rise to a detectable membrane potential at the IS; however, simultaneous injection of current into all the cells at the AS can give rise to a membrane potential at the IS that has an amplitude of about 50% of that at the AS, in agreement with experimental findings. In addition, the effects of perturbing the electrical couplings between cells in the syncytium on the EJPs recorded at different sites in the syncytium are also predicted. This work shows that the discrete bidomain model of the syncytium gives a quantitative description of the current and potential fields that occur throughout the smooth muscle of the media of blood vessels following the release of transmitter from varicosities at the adventitial surface of the vessels. The theory can be applied to the media of blood vessels of any size to determine the relative effectiveness of sympathetic nerves in controlling the excitability of smooth muscle cells through the media.
Download full-text PDF |
Source |
---|
Front Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Front Biosci (Landmark Ed)
January 2025
Department of Cytobiology and Proteomics, Medical University of Lodz, 92-215 Lodz, Poland.
Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.
View Article and Find Full Text PDFJ Clin Med
January 2025
Center for AIDS Health Disparities Research, Department of Microbiology, Immunology, and Physiology, Meharry Medical College, School of Medicine, Nashville, TN 37208, USA.
Alzheimer's disease (AD) and related dementias (ADRD) disproportionately impact racial and ethnic minorities. Contributing biological factors that explain this disparity have been elusive. Moreover, non-invasive biomarkers for early detection of AD are needed.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA).
View Article and Find Full Text PDFBiomolecules
December 2024
Jiangsu Clinical Innovation Center for Anorectal Diseases of T.C.M., Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China.
The amphibian skin secretions are excellent sources of bioactive peptides, some of which and their derivatives exhibit multiple properties, including antibacterial and antagonism against bradykinin. A novel peptide Senegalin-2 was isolated from the skin secretions of frog. Senegalin-2 relaxed rat bladder smooth muscle (EC 17.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!