Thrombin appears to underlie myometrial contractions in response to intrauterine bleeding. In a similar fashion, thrombin generated within the uterus in the absence of active bleeding could also produce contractions. These studies sought to determine whether functionally active prothrombin is expressed in the pregnant and nonpregnant rat uterus. Uteri were obtained from proestrus/estrus and timed-pregnant Sprague-Dawley rats. Western blots were performed using antithrombin antibodies. Immunohistochemical studies were performed using the same antibodies along with the Vector Elite ABC kit. Qualitative reverse transcriptase-polymerase chain reaction studies were performed using rat prothrombin-specific oligonucleotide primers. In vitro uterine contraction studies were performed using Taipan snake venom (an exogenous prothrombinase) and components of the plasma prothrombinase complex (Factors Xa and V) with and without pretreatment with thrombin inhibitors (heparin or hirudin). The Western blots demonstrated prothrombin peptides in myometrial tissue from estrus and pregnant rats. The immunohistochemical studies confirmed prothrombin peptides in both the circular and longitudinal myometrium, along with the endometrium. The reverse transcriptase-polymerase chain reaction studies demonstrated prothrombin mRNA in the endometrium and placenta, but not in the myometrial smooth muscle. The Taipan snake venom stimulated a significant increase in contractions, which were suppressed by pretreatment with heparin and hirudin. The Factor Xa and V complex also significantly stimulated uterine contractions, which were likewise inhibited by hirudin. These studies provide evidence supporting the expression of functionally active prothrombin in the pregnant and nonpregnant rat uterus. Based on the presence of its mRNA, prothrombin appears to be synthesized in the endometrium and placenta; in contrast, the myometrial smooth-muscle cells appear to sequester preformed prothrombin. These results support the hypothesis that intrauterine thrombin could play an autocrine/paracrine role in the regulation of contractile activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1071-5576(02)00163-6 | DOI Listing |
Alzheimers Dement
December 2024
GSK R&D, Stevenage, Hertfordshire, United Kingdom.
Background: Genetic variants in GRN, the gene encoding progranulin, are causal for or are associated with the risk of multiple neurodegenerative diseases. Modulating progranulin has been considered as a therapeutic strategy for neurodegenerative diseases including Frontotemporal Dementia (FTD) and Alzheimer's Disease (AD). Here, we integrated genetics with proteomic data to determine the causal human evidence for the therapeutic benefit of modulating progranulin in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA.
Background: Pharmacoepidemiologic studies assessing drug effectiveness for Alzheimer's disease and related dementias (ADRD) are increasingly popular given the critical need for effective therapies for ADRD. To meet the urgent need for robust dementia ascertainment from real-world data, we aimed to develop a novel algorithm for identifying incident and prevalent dementia in claims.
Method: We developed algorithm candidates by different timing/frequency of dementia diagnosis/treatment to identify dementia from inpatient/outpatient/prescription claims for 6,515 and 3,997 participants from Visits 5 (2011-2013; mean age 75.
Background: Alzheimer's disease (AD) agitation is a distressing neuropsychiatric symptom characterized by excessive motor activity, verbal aggression, or physical aggression. Agitation is one of the causes of caregiver distress, increased morbidity and mortality, and early institutionalization in patients with AD. Current medications used for the management of agitation have modest efficacy and have substantial side effects.
View Article and Find Full Text PDFBackground: The therapeutic management of dementia with Lewy bodies (LBD) is a challenge given the high sensitivity to drugs in this disease. This is particularly sensitive with regard to the management of parkinsonism. In particular, treatment of motor symptoms with levodopa or dopaminergic agonists poses a risk of worsening cognitive and behavioral symptoms.
View Article and Find Full Text PDFBackground: CT1812 is an experimental therapeutic sigma-2 receptor modulator in development for Alzheimer's disease (AD) and dementia with Lewy bodies. CT1812 reduces the affinity of Aβ oligomers to bind to neurons and exert synaptotoxic effects. This phase 2, multi-center, international, randomized, double-blind, placebo-controlled trial assessed safety, tolerability and effects of CT1812 on cognitive function in individuals with AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!