The Gram-positive bacterium Listeria innocua possesses an authentic ferritin with an unusual dodecameric assemblage that resembles the quaternary structure of the DNA-binding proteins designated Dps (DNA-binding proteins from starved cells). The L. innocua gene encoding the above protein, termed ferritin from Listeria innocua (fri), has been localized on a 3-kb HindIII chromosomal fragment cloned in the Escherichia coli strain DH5alphaF'. DNA sequence analysis reveals an open reading frame of 468 nucleotides matching perfectly the amino acid sequence of the protein. Primer extension analysis indicates the presence of two transcriptional startpoints located 36 (proximal) and 85 nt (distal) upstream the fri start codon, respectively. Each transcriptional startpoint is preceded by suitably located -10 and -35 elements, which match the sigma(A) (proximal) and sigma(B) (distal) consensus sequences.In L. innocua and Liseria monocytogenes, fri expression increases both upon entry into stationary phase and, more markedly, under low-iron growth conditions. The effect of iron is apparent in the exponential and stationary phases of growth. An up-regulation by iron limitation has never been observed in other proven ferritins and bacterioferritins, but has been reported for several members of the Dps family. The unusual regulation by iron of the Listeria ferritin gene provides further support to the evolutionary link with the Dps family and suggests that the iron storage function may not be the unique role of ferritin in the physiology of this bacterium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-1119(02)00839-9DOI Listing

Publication Analysis

Top Keywords

ferritin listeria
8
iron limitation
8
listeria innocua
8
dna-binding proteins
8
dps family
8
ferritin
5
iron
5
expression dodecameric
4
dodecameric ferritin
4
listeria
4

Similar Publications

Salmonellosis and listeriosis together accounted for more than one third of foodborne illnesses in the United States and almost half the hospitalizations for gastrointestinal diseases in 2018 while tuberculosis afflicted over 10 million people worldwide causing almost 2 million deaths. Regardless of the intrinsic virulence differences among Listeria monocytogenes, Salmonella enterica and Mycobacterium tuberculosis, these intracellular pathogens share the ability to survive and persist inside the macrophage and other cells and thrive in iron rich environments. Interferon-gamma (IFN-γ) is a central cytokine in host defense against intracellular pathogens and has been shown to promote iron export in macrophages.

View Article and Find Full Text PDF

AIE nanodots scaffolded by mini-ferritin protein for cellular imaging and photodynamic therapy.

Nanoscale

January 2020

State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, PR China.

Photodynamic therapy (PDT) is one of the most elegant cancer treatment strategies that can be controlled by a beam of light with non-invasion, precise control, and high spatiotemporal accuracy. An ideal photosensitizer (PS) is the key to ensure the efficacy of PDT. Due to their hydrophobic and rigid planar structures, most traditional PSs are prone to aggregate under physiological conditions, which causes fluorescence quenching and significantly reduces reactive oxygen species (ROS) generation.

View Article and Find Full Text PDF

Metal Positions and Translocation Pathways of the Dodecameric Ferritin-like Protein Dps.

Inorg Chem

September 2019

Unidad de Biofisica, Consejo Superior de Investigaciones Científicas , Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU) , Barrio Sarriena s/n, Leioa , 48940 Leioa , Basque Country , Spain.

Iron storage in biology is carried out by cage-shaped proteins of the ferritin superfamily, one of which is the dodecameric protein Dps. In Dps, four distinct steps lead to the formation of metal nanoparticles: attraction of ion-aquo complexes to the protein matrix, passage of these complexes through translocation pores, oxidation of these complexes at ferroxidase centers, and, ultimately, nanoparticle formation. In this study, we investigated Dps from to structurally characterize these steps for Co, Zn, and La ions.

View Article and Find Full Text PDF

Listeria innocua DNA binding protein from starved cells (LiDps) belongs to the ferritin family and provides a promising self-assembling spherical 12-mer protein scaffold for the generation of functional nanomaterials. We report the creation of a Gaussia princeps luciferase (Gluc)-LiDps fusion protein, with chemical conjugation of Zinc (II)-protoporphyrin IX (ZnPP) to lysine residues on the fusion protein (giving Gluc-LiDps-ZnPP). The Gluc-LiDps-ZnPP conjugate is shown to generate reactive oxygen species (ROS) via Bioluminescence Resonance Energy Transfer (BRET) between the Gluc (470-490 nm) and ZnPP.

View Article and Find Full Text PDF

Upon infection, pathogen and host compete for the same iron pool, because this trace metal is a crucial micronutrient for all living cells. Iron dysregulation in the host is strongly associated with poor outcomes in several infectious diseases, including tuberculosis, AIDS, and malaria, and inefficient iron scavenging by pathogens severely affects their virulence. Hepcidin is the master regulator of iron homeostasis in vertebrates, responsible for diminishing iron export from macrophages during iron overload or infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!