The calcium-sensing receptor (CaR) belongs to family C of the G-protein coupled receptor superfamily. The receptor is believed to exist as a homodimer due to covalent and non-covalent interactions between the two amino terminal domains (ATDs). It is well established that agonist binding to family C receptors takes place at the ATD and that this causes the ATD dimer to twist. However, very little is known about the translation of the ATD dimer twist into G-protein coupling to the 7 transmembrane moieties (7TMs) of these receptor dimers. In this study we have attempted to delineate the agonist-induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations. Stable and highly receptor-specific BRET signals were obtained in tsA cells transfected with Rluc- and GFP2-tagged CaRs under basal conditions, indicating that CaR is constitutively dimerized. However, the signals were not enhanced by the presence of agonist. These results could indicate that at least parts of the two 7TMs of the CaR homodimer are in close proximity in the inactivated state of the receptor and do not move much relative to one another upon agonist activation. However, we cannot exclude the possibility that the BRET technology is unable to register putative conformational changes in the CaR homodimer induced by agonist binding because of the bulk sizes of the Rluc and GFP2 molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1033.2002.03218.xDOI Listing

Publication Analysis

Top Keywords

car homodimer
12
calcium-sensing receptor
8
homodimer bioluminescence
8
bioluminescence resonance
8
resonance energy
8
energy transfer
8
agonist binding
8
atd dimer
8
dimer twist
8
rluc gfp2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!