Localization of adenosine A2A-receptors in rat brain with [3H]ZM-241385.

Naunyn Schmiedebergs Arch Pharmacol

Mental Health Care Group, Veterans Affairs Medical Center, Long Beach, CA 90822, USA.

Published: November 2002

AI Article Synopsis

Article Abstract

Adenosine plays a key role in the regulation of tissue oxygenation, neuronal firing, and neurotransmitter release. Four receptor subtypes have been identified and cloned: A(1), A(2A), A(2B), and A(3), although only A(1) and A(2A) receptors are prominent in rat brain. Much evidence now indicates that A(2A) receptors (A(2A)R) are highly enriched within striatal medium-sized spiny GABAergic neurons where they are closely associated with, and modulate, D(2)-dopaminergic receptors involved in motor control and reward behaviors. There is also consensus that A(2A)R are present in the nucleus accumbens and olfactory tubercle where they have been postulated to interact with prostaglandins in the regulation of sleep. There is less agreement as to whether or not A(2A)R are present in other brain regions. The present study describes an autoradiographic procedure that utilizes [(3)H]ZM-241385 (4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-alpha][1,3,5]triazin-5-ylamino]ethyl)phenol), a highly selective A(2A)-receptor ligand. Saturable specific binding was found in the rat caudate putamen with a K(d)=1.1 nM and B(max)=1150 fmol/mg. Binding was also found in the nucleus accumbens and the olfactory tubercle, but was not detected in extra-striatal brain regions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-002-0613-3DOI Listing

Publication Analysis

Top Keywords

rat brain
8
a2a receptors
8
nucleus accumbens
8
accumbens olfactory
8
olfactory tubercle
8
brain regions
8
localization adenosine
4
adenosine a2a-receptors
4
a2a-receptors rat
4
brain
4

Similar Publications

Purpose: We aimed to investigate the role of gallic acid treatment on spinal cord tissues after spinal cord injury (SCI) and its relationship with endoplasmic reticulum (ER) stress by histochemical, immunohistochemical, and in-silico techniques.

Methods: Thirty female Wistar albino rats were divided into three groups: sham, SCI, and SCI+gallic acid. SCI was induced by dropping a 15-g weight onto the exposed T10-T11 spinal cord segment.

View Article and Find Full Text PDF

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

Ghrelin, the endogenous ligand of the growth hormone secretagogue receptor (GHSR), promotes food intake, other feeding behaviours and stimulates growth hormone (GH) release from the pituitary. Growth hormone secretagogues (GHS), such as GHRP-6 and MK-0677, are synthetic GHSR ligands that activate orexigenic Neuropeptide Y neurons that co-express Agouti-Related Peptide (AgRP) in the arcuate nucleus of the hypothalamus when administered systemically. Systemic GHRP-6 also stimulates GH release in humans and rats.

View Article and Find Full Text PDF

This study aimed to investigate the impact of early childhood chronic stress on the development of the brain extracellular matrix (ECM) and how alterations in the ECM following early-life adversity (ELA) affect auditory learning and cognitive flexibility. ELA was induced through a combination of maternal separation and neonatal isolation in male Sprague-Dawley rats, and the success of the ELA model was assessed behaviorally and biochemically. A cortex-dependent go/no-go task with two phases was used to determine the impact of ELA on auditory learning and cognitive flexibility.

View Article and Find Full Text PDF

The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!