Apoptotic cell death is accompanied by degradation of chromosomal DNA. Here, we established in Drosophila a null mutation in the gene for inhibitor of caspase-activated DNase (ICAD) by P-element insertion. We also identified a loss-of-function mutant in Drosophila for DNase II-like acid DNase. The flies deficient in the ICAD gene did not express CAD, and did not undergo apoptotic DNA fragmentation during embryogenesis and oogenesis. In contrast, the deficiency of DNase II enhanced the apoptotic DNA fragmentation in the embryos and ovary, but paradoxically, the mutant flies accumulated a large amount of DNA, particularly in the ovary. This accumulation of DNA in the DNase II mutants caused the constitutive expression of the antibacterial genes for diptericin and attacin, which are usually activated during bacterial infection. The expression of these genes was further enhanced in flies lacking both dICAD and DNase II. These results indicated that CAD and DNase II work independently to degrade chromosomal DNA during apoptosis, and if the DNA is left undigested, it can activate the innate immunity in Drosophila.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC187462PMC
http://dx.doi.org/10.1101/gad.1022802DOI Listing

Publication Analysis

Top Keywords

chromosomal dna
12
innate immunity
8
immunity drosophila
8
dna
8
apoptotic dna
8
dna fragmentation
8
dnase
7
activation innate
4
drosophila
4
drosophila endogenous
4

Similar Publications

As a core genetic biomolecule in ecosystems, the metabolic processes of DNA, particularly DNA replication and damage repair, are regulated by Flap endonuclease 1 (FEN1). Abnormal expression and dysfunction of FEN1 may lead to genomic instability, which can induce a variety of chromosome-associated disorders, including tumours. FEN1 has emerged as a prominent tumour marker.

View Article and Find Full Text PDF

Application of the SpCas9 inhibitor BRD0539 for CRISPR/Cas9-based genetic tools in .

Biosci Microbiota Food Health

September 2024

Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

Although the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system has been extensively developed since its discovery for eukaryotic and prokaryotic genome editing and other genetic manipulations, there are still areas warranting improvement, especially regarding bacteria. In this study, BRD0539, a small-molecule inhibitor of Cas9 (SpCas9), was used to suppress the activity of the nuclease during genetic modification of , as well as to regulate CRISPR interference (CRISPRi). First, we developed and validated a CRISPR-SpCas9 system targeting the gene of .

View Article and Find Full Text PDF

LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1.

View Article and Find Full Text PDF

The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes . However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined.

View Article and Find Full Text PDF

Nuclear DNA is organized into a compact three-dimensional (3D) structure that impacts critical cellular processes. High-throughput chromosome conformation capture (Hi-C) is the most widely used method for measuring 3D genome architecture, while linear epigenomic assays, such as ATAC-seq, DNase-seq, and ChIP-seq, are extensively employed to characterize epigenomic regulation. However, the integrative analysis of chromatin interactions and associated epigenomic regulation remains challenging due to the pairwise nature of Hi-C data, mismatched resolution between Hi-C and epigenomic assays, and inconsistencies among analysis tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!