Vasotocin (AVT) and vasopressin (AVP) are potent modulators of social behaviors in diverse species of vertebrates. This review addresses questions about how and where AVT and AVP act to modulate social behaviors, focusing on research with an amphibian model (Taricha granulosa). In general, the behaviorally important AVT and AVP neurons occur in the forebrain and project to sites throughout the brain. Social behaviors are modulated by AVT and AVP acting at multiple sites in the brain and at multiple levels in the behavioral sequence. This review proposes that AVT and AVP can act on sensory pathways to modulate the responsiveness of neurons to behaviorally relevant sensory stimuli and also can act on motor pathways in the brainstem and spinal cord to modulate the neuronal output to behavior-specific pattern generators. This neurobehavioral model, in which AVT and AVP are thought to modulate social behaviors by affecting sensorimotor processing, warrants further research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0091-3022(02)00004-3 | DOI Listing |
Int J Mol Sci
June 2024
Department of Biological Sciences, University of Calgary, Calgary, AB 2500, Canada.
The neuropeptide vasopressin is known for its regulation of osmotic balance in mammals. Arginine vasotocin (AVT) is a non-mammalian homolog of this neuropeptide that is present in fish. Limited information suggested that vasopressin and its homologs may also influence reproductive function.
View Article and Find Full Text PDFHorm Behav
February 2024
Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, IIBCE, Montevideo 11600, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay. Electronic address:
The establishment of the dominant-subordinate status implies a clear behavioral asymmetry between contenders that arises immediately after the resolution of the agonistic encounter and persists during the maintenance of stable dominance hierarchies. Changes in the activity of the brain social behavior network (SBN) are postulated to be responsible for the establishment and maintenance of the dominant-subordinate status. The hypothalamic nonapeptides of the vasopressin (AVP) and oxytocin (OT) families are known to modulate the activity of the SBN in a context-dependent manner across vertebrates, including status-dependent modulations.
View Article and Find Full Text PDFGen Comp Endocrinol
November 2021
Unidad Bases Neurales de la Conducta, Depto Neurofisiologia Celular y Molecular, IIBCE, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
The vasopressin-vasotocin (AVP-AVT) and oxytocin-mesotocin-isotocin (OT-MT-IT) families of nonapeptides are of great importance in shaping context-dependent modulations of a conserved and yet highly plastic network of brain areas involved in social behavior: the social behavior network. The nonapeptide systems of teleost fish are highly conserved and share a common general organization. In this study, we first describe the presence of IT cells and projections in the brain of an electric fish, Gymnotus omarorum.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2021
Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Oxytocin (OT) is a crucial regulator of reproductive behaviors, including parturition in mammals. Arg-vasopressin (AVP) is a nonapeptide homologous to Arg-vasotocin (AVT) in teleosts that has comparable affinity for the OT receptor. In the present study, ovoviviparous guppies () were used to study the effect of AVT on delivery mediated by the activation of prostaglandin (PG) biosynthesis isotocin (IT) receptors (ITRs).
View Article and Find Full Text PDFHorm Behav
February 2021
Department of Integrative Biology, University of Texas at Austin, 2415 Speedway Avenue C0930, Austin, TX 78712, USA; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama. Electronic address:
Arginine vasotocin (AVT) and its homolog arginine vasopressin (AVP) modulate social behavior, including social communication. In anuran amphibians, male-male competition and female mate choice rely heavily on acoustic signaling. Behavioral experiments show that AVT influences motivation to call and vocal production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!