Efficient incorporation of a copper hydroxypyridone base pair in DNA.

J Am Chem Soc

Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Published: October 2002

Recently, we reported the first artificial nucleoside for alternative DNA base pairing through metal complexation (J. Org. Chem. 1999, 64, 5002-5003). In this regard, we report here the synthesis of a hydroxypyridone-bearing nucleoside and the incorporation of a neutral Cu(2+)-mediated base pair of hydroxypyridone nucleobases (H-Cu-H) in a DNA duplex. When the hydroxypyridone bases are incorporated into the middle of a 15 nucleotide duplex, the duplex displays high thermal stabilization in the presence of equimolar Cu(2+) ions in comparison with a duplex containing an A-T pair in place of the H-H pair. Monitoring temperature dependence of UV-absorption changes verified that a Cu(2+)-mediated base pair is stoichiometrically formed inside the duplex and dissociates upon thermal denaturation at elevated temperature. In addition, EPR and CD studies suggested that the radical site of a Cu(2+) center is formed within the right-handed double-strand structure of the oligonucleotide. The present strategy could be developed for controlled and periodic spacing of neutral metallobase pairs along the helix axis of DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja027175oDOI Listing

Publication Analysis

Top Keywords

base pair
12
cu2+-mediated base
8
pair
5
duplex
5
efficient incorporation
4
incorporation copper
4
copper hydroxypyridone
4
base
4
hydroxypyridone base
4
dna
4

Similar Publications

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF

Unlabelled: The reflexive translation of symbols in one chemical language to another defined genetics. Yet, the co-linearity of codons and amino acids is so commonplace an idea that few even ask how it arose. Readout is done by two distinct sets of proteins, called aminoacyl-tRNA synthetases (AARS).

View Article and Find Full Text PDF

Exoribonuclease-resistant RNAs (xrRNAs) are viral RNA structures that block degradation by cellular 5'-3' exoribonucleases to produce subgenomic viral RNAs during infection. Initially discovered in flaviviruses, xrRNAs have since been identified in wide range of RNA viruses, including those that infect plants. High sequence variability among viral xrRNAs raises questions about the shared molecular features that characterize this functional RNA class.

View Article and Find Full Text PDF

In duplex DNA, A-T and G-C form Watson-Crick base pairs, and Hoogsteen pairing only dominates upon protein binding or DNA damage. Using NMR, we show that an A-T Hoogsteen base pair previously observed in crystal structures of transposon DNA hairpins bound to TnpA protein forms in solution even in the absence of TnpA. This Hoogsteen base pair, located adjacent to a dinucleotide apical loop, exists in dynamic equilibrium with a minor Watson-Crick conformation (population ∼11% and lifetime ∼55 µs).

View Article and Find Full Text PDF

Despite the sequencing revolution, large swaths of the genomes sequenced to date lack any information about the arrangement of transcription factor binding sites on regulatory DNA. Massively Parallel Reporter Assays (MPRAs) have the potential to dramatically accelerate our genomic annotations by making it possible to measure the gene expression levels driven by thousands of mutational variants of a regulatory region. However, the interpretation of such data often assumes that each base pair in a regulatory sequence contributes independently to gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!