Two novel copper(II) arsenates Na5ACu4(AsO4)4Cl2 (A = Rb, Cs) were synthesized by conventional solid-state methods using reactive molten salt media. These compounds are isostructural and crystallize in an orthorhombic lattice (Fmmm, No. 69; Z = 8). The cell constants are a = 14.632(3) A, b = 18.872(2) A, c = 14.445(3) A, V = 3989(1) A3, for A = Rb; a = 14.638(3) A, b = 18.990(4) A, c = 14.418(3) A, V = 4008(1) A3, for A = Cs. Single-crystal structure studies reveal a new composite framework consisting of alternating covalent and ionic lattices. The covalent lattice contains highly oriented oligomeric mu-oxo [Cu4O12]16- tetrameric units with a cyclo-S8-like Cu4O4 magnetic core that resembles the building block of layered cuprates. The ionic slab consists of a novel framework of mixed alkali metal chloride lattice and rarely seen Na6O8 clusters. Similar to organic-inorganic hybrid materials, the title compounds present a new class of host-guest chemistry via salt inclusion reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja026008l | DOI Listing |
Inorg Chem
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China.
Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.
View Article and Find Full Text PDFNPJ Quantum Mater
January 2025
NIST Center for Neutron Research, Gaithersburg, MD 20899 USA.
The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
The search for effective anti-cancer therapies has led to the exploration of dual inhibition strategies targeting multiple key molecular pathways. In this study, we aimed to design a novel candidate capable of dual inhibition targeting both EGFR (Epidermal Growth Factor Receptor) and PARP-1 (poly(ADP-ribose)polymerase-1), two crucial proteins implicated in cancer progression and resistance mechanisms. Through molecular hybridization and structure-based drug design approaches, we synthesized a series of compounds based on spirooxindole with triazole scaffolds with the potential for dual EGFR and PARP-1 inhibition.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.
Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.
View Article and Find Full Text PDFSmall
January 2025
Faculty of Materials Science and Engineering, Analysis and Testing Research Center, Kunming University of Science and Technology, Kunming, 650093, P. R. China.
Modulating electronic structure to balance the requirement of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for developing bifunctional catalysts. Herein, phase transformation engineering is utilized to separately regulate catalyst structure, and the designed NiFe@Ni/Fe-MnOOH schottky heterojunction exhibits remarkable bifunctional electrocatalytic activity with low overpotentials of 19 and 230 mV at 10 mA cm for HER and OER in 1M KOH, respectively. Meanwhile, an anion-exchange membrane water electrolyzer employing NiFe@Ni/Fe-MnOOH as electrodes shows low voltages of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!