On the basis of chronic feeding bioassays with neonate larvae of Spodoptera littoralis reared on an artificial diet, the methanolic leaf and root extracts from Stemona collinsae displayed very high insect toxicity compared to those of two Aglaia species, a commercial Pyrethrum extract, and azadirachtin, whereas S. tuberosa extracts demonstrated low activity in roots and no activity in leaves. Beyond that, in leaf disk choice tests against fifth instar larvae, S. collinsae showed strong antifeedant activity, whereas S. tuberosa was characterized by remarkable repellency. The anti-insect properties of both species were based on pyrrolo[1,2-a]azepine alkaloids, from which didehydrostemofoline (asparagamine A) was the major compound of the roots of S. collinsae, exhibiting the highest toxicity in feeding assays. Saturation and hydroxylation of the side chain in the co-occurring stemofoline and 2'-hydroxystemofoline, respectively, led to an increasing loss of activity. Contact toxicity tests with stemofoline and didehydrostemofoline exhibited even higher activities than those of Pyrethrum extract. Tuberostemonine was the dominating alkaloid in the roots of S. tuberosa, showing outstanding repellency but no toxic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf0205615 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar.
The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, 18. Stefanowskiego Str., 90-924 Lodz, Poland.
Toxic materials are a threat in workplaces and the environment, as well as households. In them, gaseous substances are included, especially ones without any colour or fragrance, due to their non-detectability with the human senses. In this article, an attempt was made to find a solution for its detection in various conditions with the use of intelligent textiles.
View Article and Find Full Text PDFInsects
December 2024
National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China.
Asian citrus psyllid (ACP), (Hemiptera: Liviidae), is one of the most devastating pests in citrus orchards due to its role in transmitting Huanglongbing (HLB). Currently, chemical control remains the most effective strategy for ACP management. Mineral oils are commonly used as insecticides or adjuvants in integrated pest management (IPM) practices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!