High-pressure microfluidic control in lab-on-a-chip devices using mobile polymer monoliths.

Anal Chem

Sandia National Laboratories, Livermore, California 94551, USA.

Published: October 2002

We have developed a nonstick polymer formulation for creating moving parts inside of microfluidic channels and have applied the technique to create piston-based devices that overcome several microfluidic flow control challenges. The parts were created bycompletely filling the channels of a glass microfluidic chip with the monomer/ solvent/initiator components of a nonstick photopolymer and then selectively exposing the chip to UV light in order to define mobile pistons (or other quasi-two-dimensional shapes) inside the channels. Stops defined in the substrate prevent the part from flushing out of the device but also provide sealing surfaces so that valves and other flow control devices are possible. Sealing against pressures greater than 30 MPa (4,500 psi) and actuation times less than 33 ms are observed. An on-chip check valve, a diverter valve, and a 10-nL pipet are demonstrated. This valving technology, coupled with high-pressure electrokinetic pumps, should make it possible to create a completely integrated HPLC system on a chip.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac025761uDOI Listing

Publication Analysis

Top Keywords

flow control
8
high-pressure microfluidic
4
microfluidic control
4
control lab-on-a-chip
4
lab-on-a-chip devices
4
devices mobile
4
mobile polymer
4
polymer monoliths
4
monoliths developed
4
developed nonstick
4

Similar Publications

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Dry powder inhalers (DPI's) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1-5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug.

View Article and Find Full Text PDF

The Impact of a Very-Low-Calorie Ketogenic Diet on Monocyte Subsets of Patients with Obesity: A Pilot Study.

Nutrients

January 2025

Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy.

Obesity is closely linked to chronic low-grade inflammation and the development of cardio-metabolic comorbidities. Monocyte subsets, which are crucial in immune responses, have been reported to be altered in individuals with obesity, potentially exacerbating inflammation. Although very-low-calorie ketogenic diets (VLCKDs) are recognized for their efficacy in promoting weight loss and improving metabolic health, their impact on circulating monocyte subsets remains poorly understood.

View Article and Find Full Text PDF

This study investigates the optimal design and operation of an underwater ultrasonic system for algae removal, focusing on the electromechanical load of Langevin-type piezoelectric transducers. These piezoelectric transducers, which operate in underwater environments, exhibit variations in electrical-mechanical impedance due to practical environmental factors, such as waterproof molding structures or variations in pressure and flow rates depending on the water depth. To address these challenges, we modeled the underwater load conditions using the finite element method and analyzed the impedance characteristics of the piezoelectric transducer under realistic environmental conditions.

View Article and Find Full Text PDF

A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay.

Sensors (Basel)

January 2025

Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.

Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!