Behavior of Lactobacillus plantarum and Saccharomyces cerevisiae in fresh and thermally processed orange juice.

J Food Prot

Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1082, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation, Université de Bourgogne, Dijon, France.

Published: October 2002

Lactobacillus plantarum and Saccharomyces cerevisiae are acid-tolerant microorganisms that are able to spoil citrus juices before and after pasteurization. The growth of these microorganisms in orange juice with and without pasteurization was investigated. Two samples of orange juice were inoculated with ca. 10(5) CFU/ml of each microorganism. Others were inoculated with ca. 10(7) CFU/ml of each microorganism and then thermally treated. L. plantarum populations were reduced by 2.5 and <1 log10 CFU/ml at 60 degrees C for 40 s and at 55 degrees C for 40 s, respectively. For the same treatments, S. cerevisiae populations were reduced by >6 and 2 log10 CFU/ml, respectively. Samples of heated and nonheated juice were incubated at 15 degrees C for 20 days. Injured populations of L. plantarum decreased by ca. 2 log10 CFU/ml during the first 70 h of storage, but those of S. cerevisiae did not decrease. The length of the lag phase after pasteurization increased 6.2-fold for L. plantarum and 1.9-fold for S. cerevisiae, and generation times increased by 41 and 86%, respectively. The results of this study demonstrate the differences in the capabilities of intact and injured cells of spoilage microorganisms to spoil citrus juice and the different thermal resistance levels of cells. While L. plantarum was more resistant to heat treatment than S. cerevisiae was, growth recovery after pasteurization was faster for the latter microorganism.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028x-65.10.1586DOI Listing

Publication Analysis

Top Keywords

orange juice
12
lactobacillus plantarum
8
plantarum saccharomyces
8
saccharomyces cerevisiae
8
microorganisms spoil
8
spoil citrus
8
cfu/ml microorganism
8
log10 cfu/ml
8
plantarum
6
cerevisiae
5

Similar Publications

In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.

View Article and Find Full Text PDF

Acid adaptive response (AAR) is a survival mechanism that allows bacteria to develop enhanced stress tolerance. Our previous research identified AAR in Alicyclobacillus acidoterrestris, a thermo-acidophilic bacterium responsible for fruit juice spoilage. However, the roles of specific acidulants, adaptive temperatures, and acidic juice matrices in triggering AAR remain elusive.

View Article and Find Full Text PDF

A highly sensitive lateral flow immunoassay (LFIA) for imidacloprid, a widely used neonicotinoid insecticide, has been developed. The LFIA realizes the indirect coupling of anti-imidacloprid antibodies and gold nanoparticle (GNP) labels directly in the course of the assay. For this purpose, the common GNPs conjugate with anti-imidacloprid antibodies and are changed into a combination of non-modified, anti-imidacloprid antibodies, and the GNPs conjugate with anti-species antibodies.

View Article and Find Full Text PDF

This study evaluated the color stability, surface roughness, and hardness of 3D-printed and heat-polymerized denture materials. A total of 90 samples were prepared, with equal numbers of 3D-printed and heat-polymerized disks. The initial hardness, surface roughness, and color values of the samples were measured.

View Article and Find Full Text PDF

Cinnamon essential oil has gained widespread attention in the food industry as a safe and effective preservative. However, its low water solubility and high volatility limit its application in food, making the use of natural emulsifiers for its emulsification an increasingly popular focus of research. This study focuses on the extraction of galactomannan-rich aqueous extracts from Gleditsia sinensis seeds using a low-energy, low-pollution microwave-assisted method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!