Microglia in brain tumors.

Glia

Department of Neuromorphology, Max-Planck-Institute of Neurobiology, Martinsried, Germany.

Published: November 2002

Microglia have long been ignored by neurooncologists. This has changed with the realization that microglial cells not only occur within and around brain tumors but also contribute significantly to the actual tumor mass, notably in astrocytic gliomas. In addition, it has been speculated that microglia could play a role in the defense against neoplasms of the nervous system. However, the biological success of these tumors, i.e., their highly malignant behavior, indicates that natural microglial defense mechanisms do not function properly in astrocytomas. In fact, there is evidence that microglial behavior is controlled by tumor cells, supporting their growth and infiltration. This unexpected "Achilles heel" of microglial immune defense illustrates the risk of generalizing on the basis of a single aspect of microglial biology. Microglia are highly plastic cells, capable of exerting cytotoxic functions under conditions of CNS infections, but not necessarily during glioma progression. Thus, the suggestion that microglial activation through stimulation by cytokines (e.g., interferon-gamma) will benefit patients with brain tumors could prove fatally wrong. Therapeutic recruitment of microglia to treat such diffusely infiltrative brain tumors as astrocytic gliomas must be considered premature.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.10147DOI Listing

Publication Analysis

Top Keywords

brain tumors
16
astrocytic gliomas
8
microglial
6
microglia
5
tumors
5
microglia brain
4
tumors microglia
4
microglia long
4
long ignored
4
ignored neurooncologists
4

Similar Publications

Purpose: A comprehensive literature review was undertaken to understand the effects and underlying mechanisms of cranial radiotherapy (RT) on the hippocampus and hippocampal neurogenesis as well as to explore protective factors and treatments that might mitigate these effects in preclinical studies.

Methods: PubMed/MEDLINE, Web of Science, and Embase were queried for studies involving the effects of radiation on the hippocampus and hippocampal neurogenesis. Data extraction followed the Animal Research Reporting of In Vivo Experiments (ARRIVE) guidelines, and a risk of bias assessment was conducted for the included animal studies using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk of bias tool.

View Article and Find Full Text PDF

A label-free electrochemical biosensor based on graphene quantum dots-nanoporous gold nanocomposite for highly sensitive detection of glioma cell.

Anal Chim Acta

February 2025

School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:

Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.

View Article and Find Full Text PDF

Background: Methyltransferase-like 3 (METTL3) regulates numerous biological processes and diverse cancers.

Objective: To explore the frequency distribution of METTL3 rs1061026, rs1139130, and rs1263801 polymorphisms, and their potential impacts on clinical outcomes and chemotherapy-induced toxicities in a cohort of Chinese pediatric patients diagnosed with primary brain tumors (PBTs).

Methods: Genotyping for three investigated SNPs was performed in 107 pediatric patients with PBTs using the Sequenom MassARRAY iPLEX platform.

View Article and Find Full Text PDF

Macrophage membrane-camouflaged pure-drug nanomedicine for synergistic chemo- and interstitial photodynamic therapy against glioblastoma.

Acta Biomater

January 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Glioblastoma (GBM) persists as a highly fatal malignancy, with current clinical treatments showing minimal progress over years. Interstitial photodynamic therapy (iPDT) holds promise due to its minimally invasive nature and low toxicity but is impeded by poor photosensitizer penetration and inadequate GBM targeting. Here, we developed a biomimetic pure-drug nanomedicine (MM@CT), which co-assembles the photosensitizer chlorin e6 (Ce6) and the first-line chemotherapeutic drug (temozolomide, TMZ) for GBM, then camouflaged with macrophage membranes.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly aggressive adult brain cancer, characterised by poor prognosis and a dismal five-year survival rate. Despite significant knowledge gains in tumour biology, meaningful advances in patient survival remain elusive. The field of neuro-oncology faces many disease obstacles, one being the paucity of faithful models to advance preclinical research and guide personalised medicine approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!