Cytomegalovirus (CMV) is the most common infectious cause of congenital anomalies of the brain and also causes brain damage in immunocompromised individuals. We investigated the effects of murine cytomegalovirus (MCMV) infection on the developing mouse brain in terms of susceptible cells and age-related resistance to MCMV in brain slice cultures. Brain slices from BALB/c mice at different developmental stages were infected with recombinant MCMV in which the lacZ gene was inserted into a late gene. The subventricular zone and cortical marginal region were the sites most susceptible to MCMV infection, and the susceptibility declined with the development of the brain. Immunohistochemical staining showed that the virus-susceptible cells were positive for GFAP, nestin, and Musashi-1, and that most of the infected cells were positive for the proliferative cell nuclear antigen and labeled with bromodeoxyuridine. These results suggest that the susceptible cells in the subventricular zone are immature glial cells, including neural progenitor cells. Immature glial cells proliferated when the brain slices were cultured for a prolonged time and furthermore, they showed themselves to be susceptible to virus infection even under serum-free conditions. These results suggest that the amount of immature glial cells, which include neural progenitor cells, in the developing brain or in the damaged brain with neural proliferation may be closely associated with the susceptibility of the brain to CMV infection in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.lab.0000032376.58688.d4DOI Listing

Publication Analysis

Top Keywords

immature glial
16
glial cells
16
brain slices
12
brain
11
cells
10
amount immature
8
murine cytomegalovirus
8
mcmv infection
8
susceptible cells
8
subventricular zone
8

Similar Publications

() is a causative gene for genetic hydrocephalus found in hemorrhagic hydrocephalus () mice. The knockout (KO) rat has subcortical heterotopia with frequent brain hemorrhage as seen in mice. In this study, we report aberrant alpha-smooth muscle actin (α-SMA) expression in the wall of lateral ventricle of the KO rats.

View Article and Find Full Text PDF

Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.

View Article and Find Full Text PDF

A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons and likely supports local neuronal maturation and emerging synaptogenesis.

View Article and Find Full Text PDF

Growing teratoma syndrome (GTS) is characterized by a reduction in serum tumor markers despite the growth of a benign mature teratomatous mass following chemotherapy for germ cell tumors. Gliomatosis peritonei (GP) typically accompanies ovarian teratomas, marked by the dissemination of mature glial tissue across the peritoneum. The concurrent presence of GTS and GP after treatment for ovarian immature teratoma (IMT) is notably rare, with approximately 20 reported cases.

View Article and Find Full Text PDF

Müller glia in short-term dark adaptation of the Austrolebias charrua retina: Cell proliferation and cytoarchitecture.

Exp Cell Res

January 2025

Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay. Electronic address:

Article Synopsis
  • Unique life cycles of certain fish, such as Austrolebias annualis, provide insights into how these species adapt to environmental changes, particularly regarding retinal plasticity and cell proliferation.
  • Research shows that the retina of the fish A. charrua reacts to low light conditions with increased cell proliferation, suggesting a mechanism for adapting to extreme environments like drying ponds.
  • Experiments demonstrated that exposure to constant darkness enhances neurogenesis in specific retinal layers and highlights the role of Müller glia in rapid cell responses, possibly indicating an adaptive strategy to cope with changing environmental conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!