Chlamydia trachomatis infection can cause reactive arthritis that is associated with the persistence of chlamydial organisms in the joint. Fibroblasts of the synovial membrane represent host cells for Chlamydia during articular infection. In this study we investigated the expression of HLA class I molecules in synovial fibroblasts following infection with C. trachomatis D. The expression of HLA class I heavy chain (HLA-I) was up-regulated in infected cultures as shown by reverse transcription-PCR and immunoblotting. The increase in cell surface expression of HLA-I and beta(2) microglobulin on infected fibroblasts was demonstrated by flow cytometric analysis. Suppression of enhanced production of interferon-stimulated gene factor 3gamma (ISGF3gamma) in infected cell cultures by antisense oligonucleotide treatment reduced the level of HLA-I. Blocking antibodies to beta interferon (IFN-beta) inhibited the Chlamydia-induced enhancement of both ISGF3gamma and HLA-I. These findings show that the up-regulation of HLA-I in synovial fibroblasts infected with C. trachomatis is caused by the induction of IFN-beta, which in turn stimulates the synthesis of ISGF3gamma, a transcription factor participating in the regulation of the HLA-I gene. The IFN-beta-mediated expression of HLA-I on Chlamydia-infected cells may be a regulatory factor in the immune response in chlamydial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC130350PMC
http://dx.doi.org/10.1128/IAI.70.11.6140-6146.2002DOI Listing

Publication Analysis

Top Keywords

hla class
12
synovial fibroblasts
12
interferon-stimulated gene
8
gene factor
8
factor 3gamma
8
beta interferon
8
fibroblasts infection
8
chlamydia trachomatis
8
expression hla
8
expression hla-i
8

Similar Publications

The human leukocyte antigen (HLA) system plays a critical role in transplant immunology, influencing outcomes through various immune-mediated rejection mechanisms. Hyperacute rejection is driven by preformed donor-specific antibodies (DSAs) targeting HLAs, leading to complement activation and graft loss within hours to days. Acute rejection typically occurs within six months post-transplantation, involving cellular and humoral responses, including the formation of de novo DSAs.

View Article and Find Full Text PDF

LLT1 overexpression renders allogeneic-NK resistance and facilitates the generation of enhanced universal CAR-T cells.

J Exp Clin Cancer Res

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.

Background: The benefit of universal CAR-T cells over autologous CAR-T cell therapy is that they are a treatment that is ready to use. However, the prevention of graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR) remains challenging. Deleting class I of human leukocyte antigen (HLA-I) and class II of human leukocyte antigen (HLA-II) can prevent rejection by allogeneic T cells; however, natural killer (NK) cell rejection due to the loss of self-recognition remains unresolved.

View Article and Find Full Text PDF

Natural Killer Cell Education in Women With Recurrent Pregnancy Loss.

Am J Reprod Immunol

February 2025

GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Problem: Natural killer (NK) cells undergo education for full functionality via interactions between killer immunoglobulin-like receptors (KIRs) or NKG2A and human leukocyte antigen (HLA) ligands. Presumably, education is important during early pregnancy as insufficient education has been associated with impaired vascular remodeling and restricted fetal growth in mice. NK cell education is influenced by receptor co-expression patterns, human cytomegalovirus (CMV), the HLA-E107 dimorphism, and HLA-B leader peptide variants.

View Article and Find Full Text PDF

Negative Association of Gulf War Illness Symptomatology with Predicted Binding Affinity of Anthrax Vaccine Antigen to Human Leukocyte (HLA) Class II Molecules.

Vaccines (Basel)

January 2025

The GWI and HLA Research Groups, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN 55417, USA.

Background: Anthrax is a serious disease caused by () with a very high mortality when the spores of are inhaled (inhalational anthrax). Aerosolized spores can be used as a deadly bioweapon. Vaccination against anthrax is the only effective preventive measure and, hence, the anthrax vaccine was administered to United States (and other) troops during the 1990-91 Gulf War.

View Article and Find Full Text PDF

After four decades of intensive research, traditional vaccination strategies for HIV-1 remain ineffective due to HIV-1's extraordinary genetic diversity and complex immune evasion mechanisms. Cytomegaloviruses (CMV) have emerged as a novel type of vaccine vector with unique advantages due to CMV persistence and immunogenicity. Rhesus macaques vaccinated with molecular clone 68-1 of RhCMV (RhCMV68-1) engineered to express simian immunodeficiency virus (SIV) immunogens elicited an unconventional major histocompatibility complex class Ib allele E (MHC-E)-restricted CD8 T-cell response, which consistently protected over half of the animals against a highly pathogenic SIV challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!