A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Expression of kynurenine aminotransferase in the subplate of the rat and its possible role in the regulation of programmed cell death. | LitMetric

AI Article Synopsis

  • The study identifies the expression of kynurenine aminotransferase (KAT)-I in rat subplate neurons from embryonic day 16 to postnatal day 7, marking it as a key developmental marker for these neurons.
  • Subplate neurons also showed varying immunoreactivity for other proteins, such as parvalbumin and nitric oxide synthase, suggesting their role in the development of the cerebral cortex.
  • The research proposes that disturbances in the balance between NMDA receptors and KAT may lead to abnormal neuronal migration, potentially causing developmental issues.

Article Abstract

The neurons of the transient subplate zone, considered important for the prenatal development of the cerebral cortex, were shown here to express kynurenine aminotransferase (KAT)-I from embryonic day (E) 16 until postnatal day (P) 7 in the rat. No other cells of brain tissue exerted KAT-I immunoreactivity during this period. From P3 on, the neurons of the subplate gave rise to KAT-I immunoreactive, varicose axons, which entered the thalamus and terminated around thalamic nerve cells that are devoid of KAT-I immunoreactivity. Other subplate markers displayed a different expression pattern during development. Thus, subplate neurons displayed parvalbumin (PV) immuno-reactivity from E16 to P10 and an intense NPY immunoreaction from P7 to P1. They also exhibited nitric oxide synthase immunoreactivity from E16 to P10, whereas on the surface of the subplate neurons, the alpha7 subunit of the nicotinic acetylcholine receptor (nAChR) was present from P1 to P10. The cells of Cajal-Retzius were nAChR-immunoreactive during this period. Between P1 and P7, the perikarya of subplate neurons also showed an intense immuno-reaction with the N-methyl-D-aspartate (NMDA) receptor subtype R2A. After the first postnatal week, many of the KAT-I positive subplate neurons display a gradual decrease of immunoreactivity and undergo programmed cell death. Since KAT-I persists in the subplate through the period E16-P7, we conclude that KAT-I is a useful and reliable subplate marker in the rat. Since it is assumed that migration of nerve cells is regulated by NMDA receptors, and since kynurenic acid--the only naturally occurring NMDA receptor antagonist--is synthesized by KAT, we suggest that a temporary breakdown of the delicate equilibrium between NMDA and KAT might induce abnormal neuronal migration, giving rise to developmental abnormalities.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/12.11.1193DOI Listing

Publication Analysis

Top Keywords

subplate neurons
16
subplate
10
kynurenine aminotransferase
8
programmed cell
8
cell death
8
kat-i immunoreactivity
8
nerve cells
8
e16 p10
8
nmda receptor
8
kat-i
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!