Shape discrimination deficits during reversible deactivation of area V4 in the macaque monkey.

Cereb Cortex

Centre de Recherche Cerveau et Cognition, CNRS-UPS UMR 5549, Université Paul Sabatier, 133, Route de Narbonne, 31062 Toulouse Cedex, France.

Published: November 2002

The role of area V4 in the primate extrastriate cortex has received much attention in recent years. However, the deficit specificity following area V4 ablations has been difficult to determine due to the ablations including area V4 and additional adjacent areas, deficit attenuation and the numerous variations in the results of different research teams. In order to address these issues, we examined the role of area V4 during reversible deactivation of the lower visual field representation within this area while macaque monkeys performed simple pattern discriminations and their eye position was monitored. Specifically, the monkeys were trained to perform a match-to-sample task with the sample stimulus placed within or outside the visual field quadrant represented within the deactivated region of area V4. The sample and match stimuli had the same salience (same size or luminance). Using this approach, we identified significant simple shape discrimination deficits during deactivation of area V4 that did not attenuate with time. Deficits were also identified when the discriminanda were the same figure viewed at different orientations (rotated shapes). In contrast, no deficits were identified during simple hue discriminations. Furthermore, no saccadic eye movement deficits were identified during deactivation of area V4. Therefore, we conclude that deactivation of area V4 yields specific deficits on simple and rotated shape discriminations. These results show that area V4 is an important step in shape and form processing along the ventral visual stream leading to the inferotemporal cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/12.11.1146DOI Listing

Publication Analysis

Top Keywords

deactivation area
16
deficits identified
12
area
11
shape discrimination
8
discrimination deficits
8
reversible deactivation
8
area macaque
8
role area
8
visual field
8
identified simple
8

Similar Publications

CuO/CeO and CuO/CeO-LaO catalysts, synthesized with varying CeO and LaO molar ratios (1:1, 1:2, and 2:1), were prepared via the hydrothermal method and tested in the water-gas shift reaction (150-350 °C). LaO addition altered structural properties, reducing surface area and copper dispersion. XANES and in situ XRD confirmed metallic Cu species during reduction and reaction.

View Article and Find Full Text PDF

Cholesterol-terminated cationic lipidated oligomers (CLOs) as a new class of antifungals.

J Mater Chem B

January 2025

Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.

Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.

View Article and Find Full Text PDF

The Genetics and Breeding of Heat Stress Tolerance in Wheat: Advances and Prospects.

Plants (Basel)

January 2025

Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China.

Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane.

View Article and Find Full Text PDF

Involvement of RBP-J interacting and tubulin-associated protein in the distribution of protein regulator of cytokinesis 1 in mitotic spindles.

Front Cell Dev Biol

January 2025

Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany.

The protein regulator of cytokinesis 1 (PRC1) is a key regulator of microtubule crosslinking and bundling, which is crucial for spindle formation and cytokinesis. RITA, the BP-J nteracting and ubulin-ssociated protein, is a microtubule associated protein. We have reported that RITA localizes to mitotic spindles modulating microtubule dynamics and stability as well as to spindle poles affecting the activity of Aurora A.

View Article and Find Full Text PDF

Utilization of reusable catalysts and reaction media has recently been an area of interest to devise a sustainable approach. Interestingly, photoinduced reversible deactivation radical polymerization (photoRDRP) of glycidyl methacrylate (GMA) is achieved with reusable and magnetically separable nano zero-valent Iron (nZVI). This resulted in well-defined poly(glycidyl methacrylate) (PGMA) (upto 22700 g mol) with a low dispersity (Đ ≤ 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!