The localisation of urocortin in the adult rat cerebellum: a light and electron microscopic study.

Neuroscience

Laboratory for Cell Biology and Electron Microscopy, Graduate School of Behavioural and Cognitive Neuroscience, University of Groningen, Antonius Deusinglaan 1, The Netherlands.

Published: January 2003

Light and electron microscopic immunocytochemistry was used to identify the cellular and subcellular localisation of urocortin in the adult rat cerebellum. Urocortin immunoreactivity (UCN-ir) was visualised throughout the cerebellum, yet predominated in the posterior vermal lobules, especially lobules IX and X, the flocculus, paraflocculus and deep cerebellar nuclei. Cortical immunoreactivity was most evident in the Purkinje cell layer and molecular layer. Reaction product, though sparse, was found in the somata of Purkinje cells, primarily in the region of the Golgi apparatus. Purkinje cell dendritic UCN-ir was compartmentalised, with it being prevalent in proximal regions especially where climbing fibres synapsed, yet absent in distal regions where parallel fibres synapsed. In the Purkinje cell layer, the labelling was also contained in axonal terminals, synapsing directly on Purkinje cell somata. These were identified as axon terminals of basket cells based on their morphology. Terminals of stellate cells in the upper molecular layer also expressed the peptide. Whilst somata of inferior olivary neurones showed intense immunoreactivity, axonal labelling was indistinct, with only the terminals of climbing fibres containing reaction product. UCN-ir in the mossy fibre-parallel fibre system was restricted to mossy fibre rosettes of mainly posterior lobules and the varicose terminals of parallel fibres. Furthermore, labelling also was prevalent in glial perikarya and their sheaths. The current study shows, firstly, that urocortin enjoys a close ligand-receptor symmetry in the cerebellum, probably to a greater degree than corticotropin-releasing factor since corticotropin-releasing factor itself is found exclusively in the two major cerebellar afferent systems. Its congregation in excitatory and inhibitory axonal terminals suggests a significant degree of participation in the synaptic milieu, perhaps in the capacity as a neurotransmitter or effecting the release of co-localised neurotransmitters. Finally, its unique distribution in the Purkinje cell dendrite might serve as an anatomical marker of discrete populations of dendritic spines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-4522(02)00311-1DOI Listing

Publication Analysis

Top Keywords

purkinje cell
20
localisation urocortin
8
urocortin adult
8
adult rat
8
rat cerebellum
8
light electron
8
electron microscopic
8
cell layer
8
molecular layer
8
reaction product
8

Similar Publications

Trazodone, dibenzoylmethane and tauroursodeoxycholic acid do not prevent motor dysfunction and neurodegeneration in Marinesco-Sjögren syndrome mice.

PLoS One

January 2025

Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

There is no cure for Marinesco-Sjögren syndrome (MSS), a genetic multisystem disease linked to loss-of-function mutations in the SIL1 gene, encoding a BiP co-chaperone. Previously, we showed that the PERK kinase inhibitor GSK2606414 delays cerebellar Purkinje cell (PC) degeneration and the onset of ataxia in the woozy mouse model of MSS. However, GSK2606414 is toxic to the pancreas and does not completely rescue the woozy phenotype.

View Article and Find Full Text PDF

Visualizing the DNA Damage Response in Purkinje Cells Using Cerebellar Organotypic Cultures.

J Vis Exp

December 2024

The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Faculty of Health and Medical Sciences, School of Medicine, Tel Aviv University;

Cerebellar Purkinje cells (PCs) exhibit a unique interplay of high metabolic rates, specific chromatin architecture, and extensive transcriptional activity, making them particularly vulnerable to DNA damage. This necessitates an efficient DNA damage response (DDR) to prevent cerebellar degeneration, often initiated by PC dysfunction or loss. A notable example is the genome instability syndrome, ataxia-telangiectasia (A-T), marked by progressive PC depletion and cerebellar deterioration.

View Article and Find Full Text PDF

Paraneoplastic cerebellar degeneration (PCD) is a rapidly progressive, immune-mediated syndrome characterized by the degeneration of Purkinje cells, often associated with the presence of antibodies targeting intracellular antigens within these cells. These autoantibodies are implicated in the induction of cytotoxicity, leading to Purkinje cell death, as demonstrated in in vitro models. However, the precise roles of antibodies and T lymphocytes in mediating neuronal injury remain a subject of ongoing research, with T cells appearing to be the main effectors of cerebellar injury.

View Article and Find Full Text PDF

The integration of different sensory streams is required to dynamically estimate how our head and body are oriented and moving relative to gravity. This process is essential to continuously maintain stable postural control, autonomic regulation, and self-motion perception. The nodulus/uvula (NU) in the posterior cerebellar vermis is known to integrate canal and otolith vestibular input to signal angular and linear head motion in relation to gravity.

View Article and Find Full Text PDF

This study describes the congenital goiter in an alpaca (Vicugna pacos) fetus aborted in November 2021 with the clinical and pathological findings in the dam that was found dead on the farm three weeks after a miscarriage. The dam was a black coat alpaca bred in the Netherlands, imported in Italy in January 2021, and housed in a farm of central Italy for breeding purposes. Signalment and clinical data on dam and fetus were collected from the farmer and referring veterinarian.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!