Planar, cylindrical and spherical electrical double layers in biological systems. The effect of counterion size.

Cell Mol Biol Lett

Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia.

Published: May 2003

The effect of counterion size on the electrical properties of an electrolyte solution in contact with charged planar, cylindrical and spherical surfaces is considered. Electrostatic interaction is considered by means of the mean electrostatic field, while the finite size of particles constituting the electrolyte solution is considered via the excluded volume effect within the lattice statistics. Different sizes of counterion are described by different values of the lattice constant. It is shown that the excluded volume effect considerably decreases the calculated number density of counterions near the charged surface. This effect is more pronounced in cylindrical geometry than in spherical geometry, and less pronounced than in planar geometry.

Download full-text PDF

Source

Publication Analysis

Top Keywords

planar cylindrical
8
cylindrical spherical
8
counterion size
8
electrolyte solution
8
considered electrostatic
8
excluded volume
8
spherical electrical
4
electrical double
4
double layers
4
layers biological
4

Similar Publications

We present simulation results for the Donnan equilibrium between a homogeneous bulk reservoir and inhomogeneous confining geometries with varying number of restricted dimensions, . Planar slits ( = 1), cylindrical pores ( = 2), and spherical cavities ( = 3) are considered. The walls have a negative surface charge density.

View Article and Find Full Text PDF

Unlocking Micro-Origami Energy Storage.

ACS Appl Energy Mater

December 2024

Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09107 Chemnitz, Germany.

Transforming thin films into high-order stacks has proven effective for robust energy storage in macroscopic configurations like cylindrical, prismatic, and pouch cells. However, the lack of tools at the submillimeter scales has hindered the creation of similar high-order stacks for micro- and nanoscale energy storage devices, a critical step toward autonomous intelligent microsystems. This Spotlight on Applications article presents recent advancements in micro-origami technology, focusing on shaping nano/micrometer-thick films into three-dimensional architectures to achieve folded or rolled structures for microscale energy storage devices.

View Article and Find Full Text PDF

Critical adsorption of polyelectrolytes onto highly oppositely charged surfaces: Effects of charge renormalization.

J Chem Phys

November 2024

São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, 15054-000 São José do Rio Preto, Brazil.

The critical adsorption conditions of polyelectrolytes (PEs) onto planar, cylindrical, and spherical surfaces were obtained by solving the Edwards equation using the Wentzel-Kramers-Brillouin (WKB) method. It demonstrated to provide a suitable analytical approach for all three geometries, in conformity with some experimental results for weakly charged micelles. However, our Monte Carlo simulations implementing approximate solutions of the nonlinear Poisson-Boltzmann equation for highly charged surfaces indicated recently the emergence of a limiting value of ionic strength due to a nonlinear dependence of the electrostatic (ES) potential on the surface-charge density σ.

View Article and Find Full Text PDF

The development of methods for the generation of strong ultrafast electromagnetic pulses in the terahertz (THz) spectral range has led to a surge of progress in nonlinear THz spectroscopy and THz control of molecular and collective responses. For spectroscopy in the 1-THz range, the submillimeter wavelengths and associated large spot sizes, large optical elements, and short distances between final focusing elements and samples can lead to cumbersome experimental setups that are incompatible with some sample environments. Here, we introduce a novel terahertz ring excitation (TREx) optical pumping geometry to generate superposing, focusing fields in planar THz waveguides made out of the electro-optic material lithium tantalate.

View Article and Find Full Text PDF

Continuously tunable negative pressure for engineering high-symmetry nanocrystalline phases.

Proc Natl Acad Sci U S A

November 2024

Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104.

In this work, the phenomenon of strain induced by a mismatch in thermal expansion coefficients between a thin film and its substrate is harnessed in a new context, replacing the canonical planar support with a three-dimensional (3-D), nanoconfining scaffold in which we embed a material of interest. In this manner, we demonstrate a general approach to exert a continuously tunable, triaxial, tensile strain, defying the Poisson ratio of the embedded material and achieving the exotic condition of "negative pressure." This approach is hypothetically generalizable to materials of low modulus and high thermal expansion coefficient, and we use it here to achieve negative pressure in perovskite-phase CsPbI embedded within the cylindrical pores of anodic aluminum oxide membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!