Objective: Heme oxygenase (HO) is important in the defense against oxidative stress and as a factor in an antiatherogenic mechanism. Compared with long (GT)(n) repeats, short (GT)(n) repeats in the human HO-1 gene promoter were shown to have higher transcriptional activity in response to oxidative stress. There is a strong link between oxidative stress and the pathogenesis of coronary artery disease (CAD).
Methods And Results: We screened the allelic frequencies of (GT)(n) repeats in the HO-1 gene promoter in 577 patients who underwent coronary angiography. Because the distribution of numbers of (GT)(n) repeats was bimodal, we divided the alleles into 2 subclasses: class S included shorter (<27) repeats, and class L included longer (> or =27) repeats. Multivariate logistic regression models including standard coronary risk factors revealed that the genotypes were significantly related to CAD status in hypercholesterolemic, diabetic patients or in smokers. In this study, the patients with shorter GT repeats were less likely to have CAD.
Conclusions: Length polymorphism in the HO-1 gene promoter is related to CAD susceptibility in Japanese people who also have coronary risk factors such as hypercholesterolemia, diabetes, and smoking. HO-1 may play an antiatherogenic role in Japanese patients with these coronary risk factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.atv.0000033515.96747.6f | DOI Listing |
Arch Dermatol Res
January 2025
Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, 44340, Guadalajara, Mexico.
Interleukin-10 (IL-10) is an immunomodulatory molecule that may play an immunosuppressive role in nonmelanoma skin cancer (NMSC), specifically basal cell carcinoma (BCC). We analyzed the role of IL10 promoter variants in genetic determinants of BCC susceptibility and their association with IL10 mRNA and IL-10 serum levels. Three promoter variants (- 1082 A > G, - 819 T > C, and - 592 A > C) were examined in 250 BCC patients and 250 reference group (RG) individuals.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom.
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.
View Article and Find Full Text PDFNat Cancer
January 2025
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!