A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corynebactin and a serine trilactone based analogue: chirality and molecular modeling of ferric complexes. | LitMetric

Corynebactin and a serine trilactone based analogue: chirality and molecular modeling of ferric complexes.

Inorg Chem

W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352-9904, USA.

Published: October 2002

AI Article Synopsis

  • Bacteria produce siderophores to obtain iron due to the insolubility of ferric ions in neutral pH, with chirality affecting cell interaction.
  • Corynebactin, found in Gram-positive bacteria, has a structure similar to enterobactin but includes L-threonine and a glycine spacer, differentiating their properties.
  • Molecular modeling reveals that enterobactin forms a Delta-ferric complex, while corynebactin forms a Lambda complex, and the hybrid serine-corynebactin shows a near-equal mix of both conformations due to slight energy differences.

Article Abstract

Because the hydrolysis of ferric ion makes it very insoluble in aerobic, near neutral pH environments, most species of bacteria produce siderophores to acquire iron, an essential nutrient. The chirality of the ferric siderophore complex plays an important role in cell recognition, uptake, and utilization. Corynebactin, isolated from Gram-positive bacteria, is structurally similar to enterobactin, a well-known siderophore first isolated from Gram-negative bacteria, but contains L-threonine instead of L-serine in the trilactone backbone. Corynebactin also contains a glycine spacer unit in each of the chelating arms. A hybrid analogue (serine-corynebactin) has been prepared which has the trilactone ring of enterobactin and the glycine spacer of corynebactin. The chirality and relative conformational stability of the three ferric complexes of enterobactin, corynebactin, and the hybrid have been investigated by molecular modeling (including MM3 and pBP86/DN density functional theory calculations) and circular dichroism spectra. While enterobactin forms a Delta-ferric complex, corynebactin is Lambda. The hybrid serine-corynebactin forms a nearly racemic mixture, with the Lambda-conformer in slight excess. Each ferric complex has four possible isomers depending on the metal chirality and the conformation of the trilactone ring. For corynebactin, the energy difference between the two possible Lambda conformations is 2.3 kcal/mol. In contrast, only 1.5 kcal/mol separates the inverted Lambda- and normal Delta-configuration for serine-corynebactin. The small energy difference of the two lowest energy configurations is the likely cause for the racemic mixture found in the CD spectra. Both the addition of a glycine spacer and methylation of the trilactone ring (serine to threonine) favor the Lambda-conformation. These structural changes suffice to change the chirality from all Delta (enterobactin) to all Lambda (corynebactin). The single change (glycine spacer) of the hybrid ferric serine-corynebactin gives a mixture of Delta and Lambda, with the Lambda in slight excess.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic025531yDOI Listing

Publication Analysis

Top Keywords

glycine spacer
16
trilactone ring
12
corynebactin
8
molecular modeling
8
ferric complexes
8
racemic mixture
8
slight excess
8
energy difference
8
ferric
6
trilactone
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!