Distinct N-terminal regulatory domains of Ca(2+)/H(+) antiporters.

Plant Physiol

United States Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.

Published: October 2002

The regulation of intracellular Ca(2+) levels is achieved in part by high-capacity vacuolar Ca(2+)/H(+) antiporters. An N-terminal regulatory region (NRR) on the Arabidopsis Ca(2+)/H(+) antiporter CAX1 (cation exchanger 1) has been shown previously to regulate Ca(2+) transport by a mechanism of N-terminal auto-inhibition. Here, we examine the regulation of other CAX transporters, both within Arabidopsis and from another plant, mung bean (Vigna radiata), to ascertain if this mechanism is commonly used among Ca(2+)/H(+) antiporters. Biochemical analysis of mung bean VCAX1 expressed in yeast (Saccharomyces cerevisiae) showed that N-terminal truncated VCAX1 had approximately 70% greater antiport activity compared with full-length VCAX1. A synthetic peptide corresponding to the NRR of CAX1, which can strongly inhibit Ca(2+) transport by CAX1, could not dramatically inhibit Ca(2+) transport by truncated VCAX1. The N terminus of Arabidopsis CAX3 was also shown to contain an NRR. Additions of either the CAX3 or VCAX1 regulatory regions to the N terminus of an N-terminal truncated CAX1 failed to inhibit CAX1 activity. When fused to N-terminal truncated CAX1, both the CAX3 and VCAX1 regulatory regions could only auto-inhibit CAX1 after mutagenesis of specific amino acids within this NRR region. These findings demonstrate that N-terminal regulation is present in other plant CAX transporters, and suggest distinct regulatory features among these transporters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166630PMC
http://dx.doi.org/10.1104/pp.008193DOI Listing

Publication Analysis

Top Keywords

ca2+/h+ antiporters
12
ca2+ transport
12
n-terminal truncated
12
n-terminal regulatory
8
cax transporters
8
mung bean
8
truncated vcax1
8
inhibit ca2+
8
cax3 vcax1
8
vcax1 regulatory
8

Similar Publications

, a calciphilic species native to the mountainous regions of Southwest China, is renowned for its high vitamin C and bioactive components, making it valuable for culinary and medicinal uses. This species exhibits remarkable tolerance to the high-calcium conditions typical of karst terrains. However, the underlying mechanisms of this calcium resilience remain unclear.

View Article and Find Full Text PDF

This study investigated the potential for efficient and resourceful utilization of phosphogypsum (PG) through the preparation of a High-volume Phosphogypsum Cement Stabilized Road Base (HPG-CSSB). The investigation analyzed the unconfined compressive strength (UCS), water stability, strength formation mechanism, microstructure, and pollutant curing mechanism of HPG-CSSB by laser diffraction methods (LD), X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma-mass spectrometry (ICP-MS). The optimal mix ratio of HPG-CSSB was 4% cement, 1% CA2, 35% PG, and 60% graded crushed stone.

View Article and Find Full Text PDF

Deep dive into the diversity and properties of rhodopsins in actinomycetes of the family Geodermatophilaceae.

J Photochem Photobiol B

January 2025

All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, pr. Nauki 5, 142290 Pushchino, Moscow Region, Russia.

In recent decades, most studies of microbial rhodopsins have focused on their identification and characterization in aquatic bacteria. In 2021, actinomycetes of the family Geodermatophilaceae, commonly inhabiting terrestrial ecosystems in hot and arid regions, have been reported to contain rhodopsins with DTEW, DTEF and NDQ amino acid motifs. An advanced bioinformatics analysis performed in this work additionally revealed NTQ rhodopsin and heliorhodopsins.

View Article and Find Full Text PDF

Sublethal effects of acidified water on sensorimotor responses and the transcriptome of zebrafish embryos.

Chemosphere

February 2025

Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan. Electronic address:

Acidification of freshwater due to human activities is a widespread environmental problem. Its effects on the sensorimotor responses of fish, particularly during embryonic stages, may affect population fitness. To address this, zebrafish embryos were exposed to water at pH 7, 5 and 4.

View Article and Find Full Text PDF

Calcium signaling in hypoxic response.

Plant Physiol

December 2024

Department of Botany, University of Wisconsin-Madison, Birge Hall, 430 lincoln Drive, Madison, WI 53706, USA.

Plants can experience a lack of oxygen due to environmental conditions, such as flooding events or intense microbial blooms in the soil, and from their own metabolic activities. The associated limit on aerobic respiration can be fatal. Therefore, plants have evolved sensing systems that monitor oxygen levels and trigger a suite of metabolic, physiologic, and developmental responses to endure, or potentially escape, these oxygen-limiting conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!