Genetic architecture of NaCl tolerance in Arabidopsis.

Plant Physiol

División de Genética, , Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.

Published: October 2002

The little success of breeding approaches toward the improvement of salt tolerance in crop species is thought to be attributable to the quantitative nature of most, if not all the processes implicated. Hence, the identification of some of the quantitative trait loci (QTL) that contribute to natural variation in salt tolerance should be instrumental in eventually manipulating the perception of salinity and the corresponding responses. A good choice to reach this goal is the plant model system Arabidopsis, whose complete genome sequence is now available. Aiming to analyze natural variability in salt tolerance, we have compared the ability of 102 wild-type races (named ecotypes or accessions) of Arabidopsis to germinate on 250 mM NaCl, finding a wide range of variation among them. Accessions displaying extremely different responses to NaCl were intercrossed, and the phenotypes found in their F(2) progenies suggested that natural variation in NaCl tolerance during germination was under polygenic controls. Genetic distances calculated on the basis of variations in repeat number at 22 microsatellites, were analyzed in a group of either extremely salt-tolerant or extremely salt-sensitive accessions. We found that most but not all accessions with similar responses to NaCl are phylogenetically related. NaCl tolerance was also studied in 100 recombinant inbred lines derived from a cross between the Columbia-4 and Landsberg erecta accessions. We detected 11 QTL harboring naturally occurring alleles that contribute to natural variation in NaCl tolerance in Arabidopsis, six at the germination and five at the vegetative growth stages, respectively. At least five of these QTL are likely to represent loci not yet described by their relationship with salt stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166621PMC
http://dx.doi.org/10.1104/pp.006536DOI Listing

Publication Analysis

Top Keywords

nacl tolerance
16
salt tolerance
12
natural variation
12
tolerance arabidopsis
8
contribute natural
8
responses nacl
8
variation nacl
8
nacl
7
tolerance
7
accessions
5

Similar Publications

Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings.

View Article and Find Full Text PDF

Plant Growth-Promoting and Herbicidal Bacteria as Potential Bio-Based Solutions for Agriculture in Desertic Regions.

Plants (Basel)

December 2024

Laboratory of Plant Pathology and Bioproducts, Faculty of Agronomic Sciences, University of Tarapacá, Av. General Velásquez 1775, Arica 1000000, Chile.

The region of Arica and Parinacota hosts unexplored remote sites with unique characteristics suitable for developing novel agricultural bioproducts. Notable locations include Jurasi Hot Springs, Polloquere Hot Springs, and Amuyo Lagoons, featuring open pools fed by thermal mountain springs. These geothermal sites harbor bacteria with plant growth-promoting activities, particularly interesting to the strains J19, TP22, A20, and A3.

View Article and Find Full Text PDF

New Insights on Strain 1B Surface-Active Biomolecules: Gordofactin Properties.

Molecules

December 2024

Unidade de Bioenergia e Biorrefinarias, LNEG-Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.

Biosurfactants/bioemulsifiers (BSs/BEs) can be defined as surface-active biomolecules produced by microorganisms with a broad range of applications. In recent years, due to their unique properties like biodegradability, specificity, low toxicity, and relative ease of preparation, these biomolecules have attracted wide interest as an eco-friendly alternative for several industrial sectors, escalating global microbial BS/BE market growth. Recently, strain 1B, a bacterium with significant biotechnological potential, well known for its biodesulfurizing properties, carotenoid production, and broad catabolic range, was described as a BS/BE producer.

View Article and Find Full Text PDF

Background: The in vitro propagation of halophytes is innovative perspective for sustainable agriculture, conservation of natural plants and essential raw materials for industry due to increasing soil salinization and decreasing freshwater availability. Sarcocornia fruticosa, a halophytic plant, may hold promise for biosaline production systems and achieve bioactive products. Understanding the salt tolerance mechanisms of halophytes through elicitors can enhance the production of secondary metabolites, such as phenolics and flavonoids, under saline environment.

View Article and Find Full Text PDF

A novel salt-adapted bifunctional glucanase/mannanase from Klebsiella pneumoniae and its application in oligosaccharide production.

Int J Biol Macromol

January 2025

School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan 430061, PR China; Key Laboratory of·Traditional, Chinese Medicine Resources and Traditional Chinese Medicine Formulas, Hubei University of Chinese Medicine, Wuhan 430065, PR China. Electronic address:

Klebsiella pneumoniae exhibits extensive glycohydrolase activity in the gut microbiota. However, there are few studies on glucomannanase of Klebsiella pneumoniae. This study cloned and characterized a bifunctional mannanase/glucanase (GH8-3995) of K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!