Carcinogenicity of 1,3-butadiene (BD) has been linked to its metabolic activation of genotoxic epoxides. The inherited variations in the activity of BD-metabolizing enzymes may be responsible for individual differences that modulate the effects of BD exposure. In this study, 40 Italian subjects (30 BD-exposed workers and 10 clerks) were investigated to evaluate the role of genetic polymorphism of cytochromes P450 2E1, microsomal epoxide hydrolase, glutathione transferases GSTM1, GSTP1, GSTT1, and alcohol dehydrogenase, on urinary N-acetyl-S-(3,4-hydroxybutyl)-L-cysteine (MI) and hemoglobin N-(2,3,4-trihydroxybutyl)-valine adducts (THBVal). Median urinary MI and THBVal levels were 1.71 mg/g creatinine and 37.0 pmol/g globin in BD-exposed workers (exposure range, 4-201 microg/m(3)) and 1.42 mg/g creatinine and 35.3 pmol/g globin in unexposed subjects. No difference between the two groups was observed. Among all subjects, MI and THBVal levels were significantly correlated (r = 0.333). Smoking positively influenced the formation of THBVal. Higher THBVal levels were found in subjects with GSTM1 null and GSTT1 null genotypes; borderline influences were also noticed for CYP2E1(G(-35)T). An additive effect of combined polymorphisms for CYP2E1, GSTM1, and GSTT1 genes on the THBVal levels was suggested. A multiple linear regression analysis, where each factor contributed significantly, correlated THBVal levels with smoking, CYP2E1(G(-35)T), GSTT1, and GSTM1 genotypes (r = 0.698). Our results indicate that the THBVal level is influenced by genotypes, and that the analysis of combined polymorphisms may be the key to a better understanding of the role played by polymorphism of BD-metabolizing enzymes.
Download full-text PDF |
Source |
---|
Chem Biol Interact
December 2010
University of Vermont, Burlington, VT, USA.
We previously reported results of a molecular epidemiological study of female and male 1,3-butadiene (BD) exposed Czech workers showing that females appeared to absorb or metabolize less BD per unit exposure concentration than did males, based on metabolite concentrations in urine (Chem. Biol. Interact.
View Article and Find Full Text PDFRes Rep Health Eff Inst
August 2009
Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA.
Current risk assessments of 1,3-butadiene (BD*) are complicated by limited evidence of its carcinogenicity in humans. Hence, there is a critical need to identify early events and factors that account for the heightened sensitivity of mice to BD-induced carcinogenesis and to deter-mine which animal model, mouse or rat, is the more useful surrogate of potency for predicting health effects in BD-exposed humans. HEI sponsored an earlier investigation of mutagenic responses in mice and rats exposed to BD, or to the racemic mixture of 1,2-epoxy-3-butene (BDO) or of 1,2,3,4-diepoxybutane (BDO2; Walker and Meng 2000).
View Article and Find Full Text PDFChem Biol Interact
March 2007
BioMosaics, Inc., 665 Spear Street, Burlington, VT 05401, USA.
Results of a recent molecular epidemiological study of 1,3-butadiene (BD) exposed Czech workers, conducted to compare female to male responses, have confirmed and extended the findings of a previously reported males only study (HEI Research Report 116, 2003). The initial study found that urine concentrations of the metabolites 1,2-dihydroxy-4-(acetyl) butane (M1) and 1-dihydroxy-2-(N-acetylcysteinyl)-3-butene (M2) and blood concentrations of the hemoglobin adducts N-[2-hydroxy-3-butenyl] valine (HB-Val) and N-[2,3,4-trihydroxy-butyl] valine (THB-Val) constitute excellent biomarkers of exposure, both being highly correlated with BD exposure levels, and that GST genotypes modulate at least one metabolic pathway, but that irreversible genotoxic effects such as chromosome aberrations and HPRT gene mutations are neither associated with BD exposure levels nor with worker genotypes (GST [glutathione-S-transferase]-M1, GSTT1, CYP2E1 (5' promoter), CYP2E1 (intron 6), EH [epoxide hydrolase] 113, EH139, ADH [alcohol dehydrogenase]2 and ADH3). The no observed adverse effect level (NOAEL) for chromosome aberrations and HPRT mutations was 1.
View Article and Find Full Text PDFCarcinogenesis
September 2005
Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA.
1,3-Butadiene (BD) is a confirmed rodent carcinogen and a suspect human carcinogen that forms mutagenic epoxide metabolites during biotransformation. Species differences in the roles of individual DNA reactive intermediates in BD mutagenicity and carcinogenicity are not completely understood. Evidence suggests that 1,2:3,4-diepoxybutane (DEB) is responsible for the mutagenic effect induced by exposures to low concentrations of BD in mice and that metabolites of 3-butene-1,2-diol (BD-diol) are involved in the mutagenicity at high exposures in both mice and rats.
View Article and Find Full Text PDFChem Res Toxicol
June 2004
Department of Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.
For cancer risk assessment of 1,3-butadiene from rodent cancer test data, the in vivo doses of formed 1,2:3,4-diepoxybutane (DEB) should be known. In vivo doses of DEB were measured through a specific reaction product with hemoglobin (Hb), a ring-closed adduct, N,N-(2,3-dihydroxy-1,4-butadiyl)valine (Pyr-Val), to N-terminal valines. An analytical method based on tryptic digestion of Hb and quantification of Pyr-modified heptapeptides by LC-MS/MS has been further developed and applied in vivo to DEB-treated rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!