Comparing the genomes of the great apes and human should provide novel information concerning the origins of humankind. Relative to the great apes, the human karyotype has one fewer chromosome pair, as human chromosome 2 derived from the telomeric fusion of two ancestral primate chromosomes. To identify the genomic rearrangements that accompanied human speciation, we initiated a comparative study between human, chimpanzee, and gorilla. Using the HAPPY mapping method, an acellular adaptation of the radiation hybrid method, we mapped a few hundred markers on the human, chimpanzee, and gorilla genomes. This allowed us to identify several chromosome rearrangements, in particular a pericentric inversion and a translocation. We precisely localized the synteny breakpoint that led to the formation of human chromosome 2. This breakpoint was confirmed by FISH mapping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/geno.2002.6847 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!