Long-term fate of the herbicide cinosulfuron in lysimeters planted with rice over four consecutive years.

Chemosphere

Department of Agricultural Chemistry, College of Agriculture, Chungbuk National University, Cheongju, South Korea.

Published: October 2002

In order to elucidate the long-term fate of the sulfonylurea herbicide cinosulfuron, the 14C-labelled chemical was applied to a clay loam soil, encased in two lysimeters, 22 days after rice (Oryza sativa L.) transplanting, and rice plants were grown for four consecutive years. Throughout the experimental period, leaching through soil profiles, absorption and translocation by rice plants, and distribution of 14C by downward movement in the soil layers were clarified. The total volume of leachates collected through the lysimeter soil over the four years amounted to 168 and 146 L in lysimeters I and II, respectively. The leachates contained 2.43% and 2.99% of the originally applied 14C-radioactivity, corresponding to an average concentration of 0.29 and 0.41 microg/L as the cinosulfuron equivalent in lysimeters I and II, respectively. The total 14C-radioactivity translocated to rice plants in the third and fourth year was 0.69% and 0.60% (lysimeter I), and 1.02% and 0.84% (lysimeter II) of the 14C applied, respectively. Larger amounts of cinosulfuron equivalents (0.54-0.75%) remained in the straw in the fourth year than in any other parts. The 14C-radioactivities distributed down to a depth of 70 cm after four years were 56.71-57.52% of the 14C applied, indicating the continuous downward movement and degradation of cinosulfuron in soil. The non-extractable residues were more than 88% of the soil radioactivity and some 45-48% of them was incorporated into the humin fraction. The 14C-radioactivity partitioned into the aqueous phase was nearly 30% of the extractable 14C, suggesting strongly that cinosulfuron was degraded into some polar products during the experimental period. It was found out in a supplemental investigation that flooding and constant higher temperature enhanced mineralization of [14C]cinosulfuron to 14CO2 in soil, indicating the possibility of chemical hydrolysis and microbial degradation of the compound in the flooded lysimeter soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0045-6535(02)00191-1DOI Listing

Publication Analysis

Top Keywords

rice plants
12
long-term fate
8
herbicide cinosulfuron
8
consecutive years
8
soil
8
experimental period
8
downward movement
8
lysimeter soil
8
fourth year
8
14c applied
8

Similar Publications

Eating "rubbish"? Exploring the herbal secrets of "Laji-He," a traditional herbal rice snack from southern China.

J Ethnobiol Ethnomed

January 2025

Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Lushan, 332900, China.

Background: Laji-He is a traditional rice-based snack from the Beibu Gulf region in southern China. In the Beibu Gulf region, "Laji-He" (literally "garbage He") signifies the removal of toxins from the body, making it a truly "green" food. Laji-He holds essential cultural and medicinal value, incorporating various medicinal plants into its preparation.

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

Rice (Oryza sativa) is a vital food crop and staple diet for most of the world's population. Poor dietary choices have had a significant role in the development of type-2 diabetes in the population that relies on rice and rice-starch-based foods. Hence, our study investigated the in vitro digestion and glycemic indices of certain indigenous rice cultivars and the factors influencing these indices.

View Article and Find Full Text PDF

Recruitment of specific rhizosphere microorganisms in saline-alkali tolerant rice improves adaptation to saline-alkali stress.

Sci Total Environ

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China. Electronic address:

Increasing annual soil salinization poses a major threat to global ecological security. Soil microorganisms play an important role in improving plant adaptability to stress tolerance, however, the mechanism of saline-alkali tolerance to plants associated with rhizosphere microbiome is unclear. We investigated the composition and structure of the rhizospheric bacteria and fungi communities of the saline-alkali tolerant (Oryza sativa var.

View Article and Find Full Text PDF

To explore variation patterns of uptake, translocation, and accumulation processes responding to organophosphate esters (OPEs) among Poaceae plants, hydroponic and computer simulation experiments were executed. Plant growth, OPEs' concentration, and bioinformation and transcript of lipid transporters in the three terrestrial barley, wheat, and maize and aquatic rice seedlings were studied after exposure to seven OPE congeners. Four types of plants could accumulate seven OPE congeners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!