Conventional microchip applications involving capillary electrophoresis (CE) typically inject a sample along one channel and use an intersection of two channels to define the sample plug--the portion of sample to be analysed along a second channel. In contrast to this method of zone separation, frontal analysis proceeds by injecting sample continuously into a single channel or column. Frontal analysis is more common in macroscopic procedures but there are benefits in sensitivity and device density to its application to electrophoresis on microchips. This work compares conventional microchip zone analysis with frontal analysis in the separation of PCR products. Although we detect on the order of 5000 fluorophores with a compact instrument using the zone separation CE method, we found a several-fold increase in the effective signal-to-noise ratio by using a frontal analysis method. By removing the need for additional channels and reservoirs the frontal method would allow device densities to be significantly increased, potentially improving the cost-effectiveness of microchip analyses in applications such as medical diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b203515d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!