Structural analysis of lipopolysaccharide (LPS) isolated from semirough, serum-sensitive Escherichia coli strain Nissle 1917 (DSM 6601, serotype O6:K5:H1) revealed that this strain's LPS contains a bisphosphorylated hexaacyl lipid A and a tetradecasaccharide consisting of one E. coli O6 antigen repeating unit attached to the R1-type core. Configuration of the GlcNAc glycosidic linkage between O-antigen oligosaccharide and core (beta) differs from that interlinking the repeating units in the E. coli O6 antigen polysaccharide (alpha). The wa(*) and wb(*) gene clusters of strain Nissle 1917, required for LPS core and O6 repeating unit biosyntheses, were subcloned and sequenced. The DNA sequence of the wa(*) determinant (11.8 kb) shows 97% identity to other R1 core type-specific wa(*) gene clusters. The DNA sequence of the wb(*) gene cluster (11 kb) exhibits no homology to known DNA sequences except manC and manB. Comparison of the genetic structures of the wb(*)(O6) (wb(*) from serotype O6) determinants of strain Nissle 1917 and of smooth and serum-resistant uropathogenic E. coli O6 strain 536 demonstrated that the putative open reading frame encoding the O-antigen polymerase Wzy of strain Nissle 1917 was truncated due to a point mutation. Complementation with a functional wzy copy of E. coli strain 536 confirmed that the semirough phenotype of strain Nissle 1917 is due to the nonfunctional wzy gene. Expression of a functional wzy gene in E. coli strain Nissle 1917 increased its ability to withstand antibacterial defense mechanisms of blood serum. These results underline the importance of LPS for serum resistance or sensitivity of E. coli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC135379PMC
http://dx.doi.org/10.1128/JB.184.21.5912-5925.2002DOI Listing

Publication Analysis

Top Keywords

strain nissle
28
nissle 1917
28
coli strain
20
wzy gene
12
strain
9
coli
8
escherichia coli
8
coli antigen
8
repeating unit
8
wb* gene
8

Similar Publications

Although immune checkpoint inhibitors specifically targeting the PD-1/PD-L1 axis have exhibited remarkable clinical success, they are not uniformly effective across all patient cohorts. Immunotoxins, a novel class of cancer therapeutics, offering a promising alternative. PD-L1, which is also present in certain normal tissues, limits its suitability as an ideal target for immunotoxins.

View Article and Find Full Text PDF

Genetically Encoded Biosensors for Constrained Biological Functions in Probiotic Nissle.

ACS Synth Biol

January 2025

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China.

The probiotic Nissle (EcN) is an exceptional strain that has attracted significant attention not only for its clinical efficacy in the treatment and prevention of gastrointestinal disorders but also as a burgeoning microbial chassis for living therapeutic applications. However, there is an immediate necessity to develop conditional expression systems that confine the activity of EcN specifically in the gastrointestinal tract, to avoid influencing the environment. Here, we constructed two genetically encoded interchangeable sensors responsive to body temperature at 37 °C, and small molecules such as protocatechuic acid (PCA), a metabolite found in green tea.

View Article and Find Full Text PDF

The probiotic strain Nissle 1917 (EcN) with high biocompatibility and susceptibility to genetic modification is often applied in bacterial therapies for cancer. However, most studies have used plasmids as vectors to construct engineering strains from EcN. Plasmid-based expression systems suffer from genetic instability, and they need antibiotic selective pressure to maintain high copy number.

View Article and Find Full Text PDF

One-for-all gene inactivation via PAM-independent base editing in bacteria.

J Biol Chem

December 2024

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:

Base editing is preferable for bacterial gene inactivation without generating double strand breaks, requiring homology recombination or highly efficient DNA delivery capability. However, the potential of base editing is limited by the adjoined dependence on the editing window and protospacer adjacent motif (PAM). Herein, we report an unconstrained base editing system to enable the inactivation of any genes of interest (GOIs) in bacteria.

View Article and Find Full Text PDF

Bacteria genetically engineered to execute defined therapeutic and diagnostic functions in physiological settings can be applied to colonize the human microbiome, providing in situ surveillance and conditional disease modulation. However, many engineered microbes can only respond to single-input environmental factors, limiting their tunability, precision, and effectiveness as living diagnostic and therapeutic systems. For engineering microbes to improve complex chronic disorders such as inflammatory bowel disease, the bacteria must respond to combinations of stimuli in the proper context and time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!