In the present study, we have characterized the Xenopus Akt expressed in oocytes from the African clawed frog Xenopus laevis and tested whether its activity is required for the insulin- and progesterone-stimulated resumption of meiosis. A cDNA encoding the Xenopus Akt was isolated and sequenced, and its expression in the Xenopus oocyte was confirmed by reverse transcription PCR and Northern blotting. Using phosphospecific antibodies and enzyme assays, a large and rapid activation of the Xenopus Akt was observed upon insulin stimulation of the oocytes. In contrast, progesterone caused a modest activation of this kinase with a slower time course. To test whether the activation of Akt was required in the stimulation of the resumption of meiosis, we have utilized two independent approaches: a functional dominant negative Akt mutant and an inhibitory monoclonal antibody. Both the mutant Akt, as well as the inhibitory monoclonal antibody, completely blocked the insulin-stimulated resumption of meiosis. In contrast, both treatments only partially inhibited (by approx. 30%) the progesterone-stimulated resumption of meiosis when submaximal doses of this hormone were utilized. These data demonstrate a crucial role for Akt in the insulin-stimulated cell cycle progression of Xenopus oocytes, whereas Akt may have an ancillary function in progesterone signalling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1223087PMC
http://dx.doi.org/10.1042/BJ20021243DOI Listing

Publication Analysis

Top Keywords

resumption meiosis
20
progesterone-stimulated resumption
12
xenopus akt
12
insulin- progesterone-stimulated
8
xenopus oocytes
8
akt
8
inhibitory monoclonal
8
monoclonal antibody
8
xenopus
7
resumption
5

Similar Publications

Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.

View Article and Find Full Text PDF

Temporal optimization of meiotic arrest for enhancing oocyte maturity during in vitro maturation of porcine median antral follicles.

Reprod Biol

December 2024

Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kustogen, Chuncheon 24341, Republic of Korea. Electronic address:

During in vitro maturation (IVM), median antral follicles (MAFs) were mechanically aspirated from the porcine ovarian cortex, and this process causes an early disconnection of follicular somatic cells from oocytes within antral follicles before the formation of graafian follicles. Thus, nuclear maturation is accelerated ahead of the completion of cytoplasmic maturation. Dibutyryl-cAMP (dbcAMP), a well-known cAMP modulator, is used to inhibit the resumption of meiosis in immature oocytes.

View Article and Find Full Text PDF

Background: Simulated Physiological Oocyte Maturation (SPOM) mimics the physiological events of oocyte maturation in the presence of cAMP modulators. These modulators increase the intracellular concentrations of cAMP, which inhibits the immediate resumption of meiosis and gives the oocyte more time to gain optimal developmental competence. In addition, L-carnitine helps to increase the energy supply of cells through the β-oxidation of fatty acids.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effect of different concentrations of triciribine, a selective Akt inhibitor, on various aspects of oocyte maturation and on the IVF of bovine embryos. Cumulus-oocyte complexes (COCs) were matured in vitro in medium supplemented with: 0 (control), 1, 5, 10, and 20 μM of triciribine. The nuclear maturation was assessed by staining with acetic orcein, while the cytoplasmic maturation was evaluated by mitochondrial (MitoTracker® Red CMXRos) and lipid droplets distribution (LipidTOX).

View Article and Find Full Text PDF

The use of C-type natriuretic peptide (CNP) in the interaction with the oocyte and in the temporary postponement of spontaneous meiosis resumption has already been well described. However, its action in pre-implantation developmental-stage embryos is yet to be understood. Thus, our study aimed to detect the presence of the canonical CNP receptor (natriuretic peptide receptor, NPR2) in germinal vesicle (GV)-, metaphase II (MII)-, presumptive zygote (PZ)-, morula (MO)-, and blastocyst (BL)-stage embryos and, later, to observe possible modulations on the embryos when co-cultured with CNP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!