Complex gangliosides as autoantibody targets at the neuromuscular junction in Miller Fisher syndrome: a current perspective.

Neurochem Res

University Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, Scotland, United Kingdom.

Published: August 2002

Glycosphingolipid biology has increasingly interfaced with the field of human autoimmune neuropathy over the last two decades. There are currently over 20 distinct glycolipids that have been identified as autoantibody targets in a wide range of clinical neuropathy syndromes. This review sets out the clinical and experimental background to one interesting example of anti-glycolipid antibody-associated neuropathy termed Miller Fisher syndrome. This syndrome, comprising the triad of ataxia, areflexia, and ophthalmoplegia, correlates highly with the presence of serum anti-GQ1b antibodies, arising through molecular mimicry with microbial oligosaccharides. Anti-GQ1b antibodies mediate neural injury through binding to GQ1b-enriched sites in the peripheral nervous system, including extraocular nerves. Animal experimental evidence, along with a hypothetical background, indicates the motor nerve terminal may be a key site for anti-GQ1b antibody binding with consequent defects in synaptic transmission, as occurs in botulism and other toxinopathies. Our work in recent years on this hypothesis is summarized.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1020284302718DOI Listing

Publication Analysis

Top Keywords

autoantibody targets
8
miller fisher
8
fisher syndrome
8
anti-gq1b antibodies
8
complex gangliosides
4
gangliosides autoantibody
4
targets neuromuscular
4
neuromuscular junction
4
junction miller
4
syndrome current
4

Similar Publications

Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully.

View Article and Find Full Text PDF

Targeted Therapy for Severe Sjogren's Syndrome: A Focus on Mesenchymal Stem Cells.

Int J Mol Sci

December 2024

Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.

Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by the infiltration of lymphocytes on salivary and lacrimal glands, resulting in their dysfunction. Patients suffering from severe pSS have an increased risk of developing multi-organ dysfunction syndrome due to the development of systemic inflammatory response, which results in immune cell-driven injury of the lungs, kidneys, liver, and brain. Therapeutic agents that are used for the treatment of severe pSS encounter various limitations and challenges that can impact their effectiveness.

View Article and Find Full Text PDF

Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers ( = 18) with extensive blast exposure against unexposed military controls ( = 19).

View Article and Find Full Text PDF

: While post-acute COVID-19 syndrome is well known and extensively studied, the post-acute COVID vaccination syndrome (PACVS) is a more recent nosological entity that is poorly defined at the immunopathological level, although it shares many symptoms with the sequelae of viral infections. : This single-center retrospective study reports a case series of 17 subjects vaccinated with mRNA or adenoviral vector vaccines who were healthy before vaccination and had never been infected with SARS-CoV-2 but who presented with symptoms similar to PACVS for a median time of 20 months (min 4, max 32). The medical records of all patients referred to our outpatient clinic over a one-year period were retrospectively analyzed.

View Article and Find Full Text PDF

Antibodies Against Anti-Oxidant Enzymes in Autoimmune Glomerulonephritis and in Antibody-Mediated Graft Rejection.

Antioxidants (Basel)

December 2024

Unit of Nephrology, Dialysis and Transplantation and Laboratory of Molecular Nephrology, Core Facilities-Proteomics Laboratory, 16147 Genoa, Italy.

Historically, oxidants have been considered mechanisms of glomerulonephritis, but a direct cause-effect correlation has never been demonstrated. Several findings in the experimental model of autoimmune conditions with renal manifestations point to the up-regulation of an oxidant/anti-oxidant system after the initial deposition of autoantibodies in glomeruli. Traces of oxidants in glomeruli cannot be directly measured for their rapid metabolism, while indirect proof of their implications is derived from the observation that Superoxide Oxidase 2 (SOD2) is generated by podocytes after autoimmune stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!