Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Calcium phosphate crystalline powders grown under terrestrial and space (EURECA 1992-1993 flight) conditions in the Solution Growth Facility are analyzed and compared by optical and electron microscopy (scanning and transmission), electron and X-ray microdiffraction and microanalyses. On earth, only small, micrometer size scale, spherolites of hydroxyapatite (HAP) grow. In space, the HAP spherolites reach hundreds of micrometer. Also, octacalcium phosphate (OCP) spherolites up to 3 mm have been obtained. Computer modelling of diffusion in a real chamber has been performed. It suggests high spatial supersaturation gradients at zero gravity which may provide much higher local supersaturations on earth, where convection takes place. The analyses suggest that the dramatic difference between the terrestrial and space samples should come from much lower supersaturation in space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0022-0248(95)00113-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!