Structural profiling of short-chain lipopolysaccharides from Haemophilus influenzae.

Methods Mol Med

Clinical Research Center, Karolinska Intitutet, University College of South Stockholm, NOVUM, Huddinge, Sweden.

Published: March 2003

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-321-6:161DOI Listing

Publication Analysis

Top Keywords

structural profiling
4
profiling short-chain
4
short-chain lipopolysaccharides
4
lipopolysaccharides haemophilus
4
haemophilus influenzae
4
structural
1
short-chain
1
lipopolysaccharides
1
haemophilus
1
influenzae
1

Similar Publications

Background: Systemic diseases are often associated with endothelial cell (EC) dysfunction. A key function of ECs is to maintain the barrier between the blood and the interstitial space. The integrity of the endothelial cell barrier is maintained by VE-Cadherin homophilic interactions between adjacent cells.

View Article and Find Full Text PDF

A major locus SC9.1 was identified and finely mapped into a 92.68 Kb region, and longmi004412 was identified as the casual gene regulating brown seed color in broomcorn millet.

View Article and Find Full Text PDF

Introductory Analysis and Validation of CUT&RUN Sequencing Data.

J Vis Exp

December 2024

Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center; Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center;

The CUT&RUN technique facilitates detection of protein-DNA interactions across the genome. Typical applications of CUT&RUN include profiling changes in histone tail modifications or mapping transcription factor chromatin occupancy. Widespread adoption of CUT&RUN is driven, in part, by technical advantages over conventional ChIP-seq that include lower cell input requirements, lower sequencing depth requirements, and increased sensitivity with reduced background signal due to a lack of cross-linking agents that otherwise mask antibody epitopes.

View Article and Find Full Text PDF

Förster resonance energy transfer (FRET) is becoming a valuable technique in gas-phase structural biology for identifying local structural motifs and conformations of biological molecules, such as peptides and proteins. This method involves labeling the biomolecule with two dyes, a donor dye and an acceptor dye, that are commonly charged rhodamines. Here we examine how different amino acid (AA) methyl esters linked to the dye via amide linkages can influence the dye transition energy and, consequently, the energy-transfer efficiency, using cryogenic ion fluorescence spectroscopy.

View Article and Find Full Text PDF

Identification of cellular signatures associated with chinese hamster ovary cell adaptation for secretion of antibodies.

Comput Struct Biotechnol J

December 2024

Cell Culture and Fermentation Sciences, BioPharmaceutical Development, AstraZeneca, Cambridge UK.

The secretory capacity of Chinese hamster ovary (CHO) cells remains a fundamental bottleneck in the manufacturing of protein-based therapeutics. Unconventional biological drugs with complex structures and processing requirements are particularly problematic. Although engineered vector DNA elements can achieve rapid and high-level therapeutic protein production, a high metabolic and protein folding burden is imposed on the host cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!