Differential proteome analysis is used to study body fluids from patients suffering from rheumatoid arthritis (RA), reactive arthritis (reaA) or osteoarthritis (OA). Mass spectrometric structure characterization of gel-separated proteins provided a detailed view of the protein-processing events that lead to distinct protein species present in the respective body fluids. (i) Fibrin(ogen) beta-chain degradation products, presumably plasmin-derived, appeared solely in synovial fluids (SF) from both patient collectives, (ii) calgranulin B (MRP14) was exclusively identified in SF samples derived from 5 out of 6 patients suffering from RA. Calgranulin B was not observed in synovial fluids from OA patients, nor in plasmas from either patient group. In all cases where calgranulin B was detected, calgranulin C was identified as well. (iii) Serum amyloid A protein spots were determined in plasmas and synovial fluids from patients with RA, but not in patients with OA. In addition to disease-relevant differences, interindividual differences in haptoglobin patterns of the patients under investigation were observed. Hence, in-depth proteome analysis of body fluids has proven effective for identification of multiple molecular markers and determination of associated protein structure modifications, that are thought to play a role for specifically determining a defined pathological state of diseased joints.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1522-2683(200210)23:19<3445::AID-ELPS3445>3.0.CO;2-JDOI Listing

Publication Analysis

Top Keywords

synovial fluids
16
patients suffering
12
body fluids
12
fluids patients
12
mass spectrometric
8
suffering rheumatoid
8
rheumatoid arthritis
8
reactive arthritis
8
proteome analysis
8
fluids
7

Similar Publications

Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction induces chondrocyte senescence, thereby precipitating articular cartilage (AC) degeneration in the pathogenesis of osteoarthritis (OA). Although the transfer of mitochondria from mesenchymal stem cells (MSCs) to host cells and their potential protective role have been demonstrated, whether MSCs can alleviate chondrocyte mitochondrial dysfunction or reverse OA progression remains unclear.

Methods: A mitochondrial tracer was used to investigate the transfer of mitochondria-rich extracellular vesicles (MEV) derived from the culture supernatant of human synovial fluid-derived mesenchymal stem cells (hSF-MSCs).

View Article and Find Full Text PDF

Collagen/polyvinyl alcohol scaffolds combined with platelet-rich plasma to enhance anterior cruciate ligament repair.

Biomater Adv

December 2024

College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:

In anterior cruciate ligament (ACL) repair methods, the continuous enzymatic erosion of synovial fluid can impede healing and potentially lead to repair failure, as well as exacerbate articular cartilage wear, resulting in joint degeneration. Inspired by the blood clot during medial collateral ligament healing, we developed a composite scaffold comprising collagen (1 %, w/v) and polyvinyl alcohol (5 %, w/v) combined with platelet-rich plasma (PRP). The composite scaffold provides a protective barrier against synovial erosion for the ruptured ACL, while simultaneously facilitating tissue repair, thereby enhancing the efficacy of ACL repair techniques.

View Article and Find Full Text PDF

Multi-tiered proteome analysis displays the hyper-permeability of the rheumatoid synovial compartment for plasma proteins.

Mol Cell Proteomics

December 2024

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, the Netherlands. Electronic address:

Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction. RA affects the synovial joints, the synovial lining and the permeability of the synovium. As the latter is of central relevance for the distribution of systemically delivered therapeutics into synovial fluid (SF), we here assessed the protein composition of paired plasma and SF of patients diagnosed with RA at three distinct levels of depth using mass spectrometric approaches: the "total" proteome, the "total" IgG1 antibody repertoire and the RA-specific ACPA IgG1 autoantibody repertoire.

View Article and Find Full Text PDF

Hydrogel Doped with Sinomenine-CeO Nanoparticles for Sustained Intra-articular Therapy in Knee Osteoarthritis.

J Drug Target

January 2025

Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210000, China.

Intra-articular injection has emerged as a promising approach for treating knee osteoarthritis (OA), showing notable efficacy and potential. However, the risk of side effects remains a concern with the commonly used steroid therapies in clinical practice. Here, we developed an intra-articular injectable hydrogel drug depot (SMN-CeO@G) for sustained OA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!