AI Article Synopsis

Article Abstract

Inactivation of bovine brain mitochondrial hexokinase by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), a sulfhydryl specific reagent, has been investigated. The study shows that the inactivation of the enzyme by DTNB proceeds by way of prior binding of the reagent to the enzyme and involves the reaction of 1 mol of DTNB with a mol of enzyme. At stoichiometric levels of DTNB, the inactivation of the enzyme is accompanied by the formation of a disulfide bond. But it is not clear whether the disulfide bond or the mixed disulfide intermediate formed prior to it causes inactivation. On the basis of considerable protection afforded by glucose against this inactivation it is tentatively concluded that the sulfhydryl residues involved in this inactivation are at the glucose binding site of the enzyme, although other possibilities are not ruled out. An analysis of effects of various substrates and inhibitors on the kinetics of inactivation and sulfhydryl modification by DTNB has led to the proposal that the binding of substrates to the enzyme is interdependent and that glucose and glucose 6-phosphate produce slow conformational changes in the enzyme. Protective effects by ligands have been employed to calculate their dissociation constant with respect to the enzyme. The data also indicate that glucose 6-phosphate and inorganic phosphate share the same locus on the enzyme as the gamma phosphate of ATP and that nucleotides ATP and ADP bind to the enzyme in the absence of Mg2+.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00692a022DOI Listing

Publication Analysis

Top Keywords

enzyme
10
inactivation enzyme
8
disulfide bond
8
glucose 6-phosphate
8
inactivation
7
dtnb
5
glucose
5
ligands reactivity
4
reactivity essential
4
essential sulfhydryls
4

Similar Publications

Methyleugenol (ME) has been classified as a "group 2B carcinogen" by IARC. Its positional isomer methylisoeugenol (MIE) has been considered to be of "generally recognized as safe'' status by FDA. ME was more cytotoxic than MIE in cultured mouse primary hepatocytes.

View Article and Find Full Text PDF

Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.

View Article and Find Full Text PDF

Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.

View Article and Find Full Text PDF

Wheat Bread Supplemented with Egg Albumin: Structural Features, and In Vitro Starch and Protein Digestibility.

Plant Foods Hum Nutr

January 2025

Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana- Iztapalapa, Apartado Postal 55-534, Iztapalapa, CDMX, 09340, Mexico.

This study aimed to explore the effects of egg albumin protein addition (5, 15 and 20 g/100 g db) on the textural characteristics, as well as in the in vitro digestibility of protein and starch of wheat bread. Egg albumin addition resulted in smoother bread loaves as compared to traditional wheat bread. Reduced hardness and increased cohesiveness were correlated to the protein secondary structure, mainly with the content of β-sheets.

View Article and Find Full Text PDF

L-valine holds wide-ranging applications in medicine, food, feed, and various industrial sectors. Escherichia coli, a pivotal strain in industrial L-valine production, features a concise fermentation period and a well-defined genetic background. This study focuses on mismatch repair genes (mutH, mutL, mutS, and recG) and genes associated with mutagenesis (dinB, rpoS, rpoD, and recA), employing a high-glucose adaptive culture in conjunction with metabolic modifications to systematically screen for superior phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!