To examine effects of cytosolic Na+, K+, and Cs+ on the voltage dependence of the Na+-K+ pump, we measured Na+-K+ pump current (Ip) of ventricular myocytes voltage-clamped at potentials (Vm) from 100 to +60 mV. Superfusates were designed to eliminate voltage dependence at extracellular pump sites. The cytosolic compartment of myocytes was perfused with patch pipette solutions with a Na+ concentration ([Na]pip) of 80 mM and a K+ concentration from 0 to 80 mM or with solutions containing Na+ in concentrations from 0.1 to 100 mM and K+ in a concentration of either 0 or 80 mM. When [Na]pip was 80 mM, K+ in pipette solutions had a voltage-dependent inhibitory effect on Ip and induced a negative slope of the Ip-Vm relationship. Cs+ in pipette solutions had an effect on Ip qualitatively similar to that of K+. Increases in Ip with increases in [Na]pip were voltage dependent. The dielectric coefficient derived from [Na]pip-Ip relationships at the different test potentials was 0.15 when pipette solutions included 80 mM K+ and 0.06 when pipette solutions were K+ free.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.01343.2000 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!