Apical H(+)/base transporters mediating bicarbonate absorption and pH(i) regulation in the OMCD.

Am J Physiol Renal Physiol

Department of Physiology and Biophysics, College of Medicine, University of South Florida, Tampa, Florida 33612, USA.

Published: November 2002

The outer medullary collecting duct (OMCD) plays an important role in mediating transepithelial HCO transport [J(HCO(3)(-))] and urinary acidification. HCO absorption by type A intercalated cells in the OMCD inner stripe (OMCD(is)) segment is thought to by mediated by an apical vacuolar H(+)-ATPase and H(+)-K(+)-ATPase coupled to a basolateral Cl(-)-HCO exchanger (AE1). Besides these Na(+)-independent transporters, previous studies have shown that OMCD(is) type A intercalated cells have an apical electroneutral EIPA-sensitive, DIDS-insensitive Na(+)-HCO cotransporter (NBC3); a basolateral Na(+)/H(+) antiporter; and a basolateral Na(+)-K(+)-ATPase. In this study, we reexamined the Na(+) dependence of transepithelial Na(+) transport in the OMCD(is) and determined the role of apical NBC3 in intracellular (pH(i)) regulation in OMCD(is) type A intercalated cells. Control tubules absorbed HCO at a rate of approximately 13 pmol. min(-1). mm(-1). Lowering luminal Na(+) from 140 to 40 mM decreased [J(HCO(3)(-))] by approximately 15% without a change in transepithelial potential (V(te)). Furthermore, 50 microM EIPA (lumen) also decreased [J(HCO(3)(-))] by approximately 13% without a change in V(te). The effect of lowering luminal Na(+) and adding EIPA were not additive. These results demonstrate that [J(HCO(3)(-))] in the OMCD(is) is in part Na(+) dependent. In separate experiments, the pH(i) recovery rate after an NH prepulse was monitored in single type A intercalated cells with confocal fluorescence microscopy. The pH(i) recovery rate was approximately 0.21 pH/min in Na(+)-containing solutions and decreased to approximately 0.16 pH/min with EIPA (50 microM, lumen). In tubules perfused/bathed without Na(+), luminal Na(+) addition resulted in a pH(i) recovery rate of approximately 0.36 pH/min, whereas the Na(+)-independent recovery rate was approximately 0.16 pH/min. EIPA (50 microM, lumen) decreased the Na(+)-dependent pH(i) recovery rate to approximately 0.07 pH/min. The Na(+)-independent recovery rate was decreased to approximately 0.06 pH/min by bafilomycin (10 nM, lumen) and to approximately 0.10 pH/min using Schering 28080 (10 microM, lumen). These findings indicate that NBC3 contributes to pH(i) regulation in OMCD(is) type A intercalated cells and plays only a minor role in mediating [J(HCO(3)(-))] in the OMCD(is).

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.0241.2001DOI Listing

Publication Analysis

Top Keywords

recovery rate
24
type intercalated
20
intercalated cells
20
phi recovery
16
phi regulation
12
omcdis type
12
luminal na+
12
microm lumen
12
role mediating
8
regulation omcdis
8

Similar Publications

Energy availability and macronutrient intake over a 7-day training period in adolescent rugby players.

J Sports Med Phys Fitness

January 2025

Research Unit on Youth, Physical Activity, Sports and Health (J-AP2S), University of Toulon, Toulon, France.

Background: Understanding the dietary intake of elite adolescent athletes and its adequacy with sport nutrition recommendation is a key issue for health and player development, as well as performance and recovery. Energy availability needs to be considered to ensure optimal health and performance in young athletes. The present study aimed to quantify energy availability, energy expenditure and macronutrient intake in young male rugby union players competing at national level.

View Article and Find Full Text PDF

Background: Epileptiform activity, including status epilepticus (SE), occurs in up to one-third of comatose survivors of cardiac arrest and may predict poor outcome. The relationship between SE and hypoxic-ischemic brain injury (HIBI) is not established.

Methods: This is a single-center retrospective study on consecutive patients with post-anoxic super-refractory SE.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women. In response to the need to hospital stays and minimize waiting time for surgery, particularly during the COVID-19 pandemic, the National Cancer Institute developed the One Day Surgery with Breast cancer Home Recovery program (ODS BHR NCI). The aim of study is to assess the success rate of breast cancer surgeries conducted through this program and to evaluate the incidence of complications.

View Article and Find Full Text PDF

Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!