Evidence links the insulin resistance syndrome with endothelial dysfunction. Previously, we have described a decreased endothelial nitric oxide synthase (eNOS) activity in both aortic endothelium and cardiac tissue, and an increased proliferation of aortic primary cultured vascular smooth muscle cells (pC-VSMCs), obtained from fructose-fed rats (FFR), an experimental model of syndrome X. Because the participation of the renin-angiotensin system (RAS) in this model is still unclear, the present study examined the effect of chronic administration of an angiotensin converting enzyme (ACE) inhibitor enalapril (E) on pC-VSMCs proliferation and eNOS activity in a conduit artery (aorta) and in resistance vessels (mesenteric vascular bed) from fructose-fed rats. Male Wistar rats were used: Control, FFR, Control + E, and FFR + E (n = 8 in each group). After 8 weeks, tissue samples were obtained and 10% fetal calf serum (FCS) proliferative effect was examined in pC-SMCs of aortic and mesenteric arteries by [(3)H]thymidine incorporation. The eNOS activity was estimated in endothelial lining from both origins by conversion of [(3)H]arginine into [(3)H]citrulline. The FFR aortic and mesenteric pC-VSMCs showed a significantly increased 10% FCS-induced [(3)H]thymidine incorporation compared to controls. The FFR aortic and mesenteric endothelium eNOS activity was significantly decreased. Chronic treatment with E abolished the increased proliferation and restored eNOS activity. These data confirm that changes in VSMCs proliferation and endothelial dysfunction at different levels of the vascular system are involved in syndrome X, and that the inhibition of angiotensin II production can revert those changes, suggesting an important role for RAS and possibly kinins, in the physiopathologic mechanism of this model of syndrome X.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0895-7061(02)02983-7 | DOI Listing |
Food Chem
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
Vascular endothelial dysfunction is an important pathogenic factor in hypertension, in which angiotensin-converting enzyme (ACE) plays an important role. Peptides that bind to ACE may attenuate vascular endothelial dysfunction by altering the structure of ACE. This study demonstrated that ITAPHW and IRPNGL were resistant to simulated gastrointestinal fluid and were transported across the Caco-2 monolayer via the intercellular space, with ITAPHW showing a high apparent permeability coefficient of (1.
View Article and Find Full Text PDFReceptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells.
View Article and Find Full Text PDFIntroduction: The pathogenic role of nitric oxide (NO) signaling during development of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is currently unclear. We characterized vasomotor function and its relationship to the activity of the NO-generating enzymes in mice with early onset progressively severe MFS.
Methods: Wire myography, immunoblotting, measurements of aortic NO and superoxide levels were used to compare vasomotor function, contractile-protein levels, and the activity of endothelial and inducible NO synthase (eNOS and iNOS, respectively) in ascending thoracic aortas of Fbn1mgR/mgR mice relative to wild type (WT) littermates.
Chem Biol Interact
January 2025
Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, PR China. Electronic address:
Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!