The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity.

Hear Res

The Auditory Laboratory, Department of Physiology, University of Western Australia, Nedlands 6907, Australia.

Published: November 2002

We have monitored the spectrum of the (spontaneous) neural noise at the round window (RW) and on the surface of the antero-ventral cochlear nucleus (CN) and the dorsal CN (DCN) of anaesthetised guinea pigs. We have also obtained the average gross extracellular waveform evoked by 20 kHz tone-bursts (0.25 ms and 25 ms) at each of these recording sites, and calculated the spectrum of the average waveforms (SAW). With these tone-bursts, only a small population of neurones in the extreme basal turn of the cochlea near the RW electrode responds, presumably with only a single action potential for each 0.25 ms tone-burst. The RW waveforms recorded between 20 dB and 60 dB SPL were very similar, and are therefore presumably a simple estimate of the shape of the contribution of the firing of a single neurone to the gross RW signal (the unitary potential or UP). In normal animals, the SNN and the SAW were remarkably similar, with peaks at 900 Hz and at 2400 Hz, suggesting that they are not due to neural synchronisation (as suggested previously by others), but are due to an oscillatory waveform produced by each single fibre action potential. Abolition of all spike activity by RW tetrodotoxin left a waveform with only a summating potential and a dendritic potential, and no 900 Hz peak in the SAW or SNN, indicating that the spectral peak is due to neural spiking only. Abolition of the CN contribution to the RW waveforms by CN application of lignocaine or sectioning of the cochlear nerve at the internal meatus (by focal aspiration of the DCN and underlying cochlear nerve) showed that the 900 Hz peak was not simply due to the addition of a delayed and inverted CN contribution: mathematical modelling shows that this would produce a broad spectral peak at about 1200 Hz. Moreover, the 900 Hz spectral peak remains after complete abolition of the CN contribution, although reduced in amplitude. This residual 900 Hz peak can be traced to an oscillation in the gross waveform due to the presence of two peaks (P(1)* and N(2)*) which follow the intact N(1) peak. The P(1)* and N(2)* peaks were present at the RW, but not at the cochlear nerve as it exits the internal meatus, suggesting that they were not due to double-spiking of some of the neurones, but were probably due to a sub-threshold electrical resonance in the peripheral dendrites. We have successfully modelled the production of the SNN and the compound action potential and SAW in response to 0.25 ms and 25 ms tone-bursts at 20 kHz by including only a damped 900 Hz resonance in the UP, without refractory effects, preferred intervals or synchronisation in the timing of neural spike generation. Such resonances in other neurones are known to be due to the activation kinetics of the voltage-controlled sodium (Na(+)) channels of these neurones. The presence of such sub-threshold oscillations probably indicates that the peripheral dendrites are devoid of stabilising potassium (K(+)) channels. We also discuss the role of this membrane resonance in generating burst-firing of the cochlear nerve (as with salicylate) and the role of such burst-firing in generating tinnitus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-5955(02)00281-2DOI Listing

Publication Analysis

Top Keywords

spectral peak
16
cochlear nerve
16
action potential
12
900 peak
12
900 spectral
8
peak
8
abolition contribution
8
internal meatus
8
p1* n2*
8
peripheral dendrites
8

Similar Publications

The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.

View Article and Find Full Text PDF

Photo-induced multiple charge transfer resonance of Ce-MOF for SERS detection of nucleic acid.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China. Electronic address:

Background: Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility.

View Article and Find Full Text PDF

Self-Powered Filterless Narrowband UV Photodetection Triggered by Asymmetric Charge Carrier Generation in a Wide-Bandgap Halide Perovskite Ferroelectric.

Small

January 2025

Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China.

Narrowband photodetection with selective light detection in ultraviolet (UV) range is particularly pronounced in specialized such as targeted wavelength imaging and UV-phototherapy. In contrast to conventional strategies, ferroelectric materials with pronounced bulk photovoltaic effect (BPVE) provide a novel asymmetric carrier generation concept for achieving filterless spectrally selective photodetection. Herein, for the first time, the realization of self-powered filterless narrowband UV photodetection is demonstrated in bulk single crystals of a newly developed halide perovskite ferroelectric, 2FEAEAPbCl (2FEEPC), which exhibits a wide bandgap of 3.

View Article and Find Full Text PDF

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!