Bombesin-like peptides, including the mammalian homologue gastrin-releasing peptide, are highly expressed and secreted by neuroendocrine cells in prostate carcinoma tissues and are likely to be related to the progression of this neoplastic disease. Previously, we demonstrated that bombesin increased migration and protease expression in androgen-independent cells. In this work we show that bombesin is able to activate pro-MMP-9 through a mechanism involving the beta1 integrin subunit. In fact, MMP-9 processing was evident only when beta1 integrin was engaged with specific adhesive substrates, such as type I collagen, or when cells were seeded on dishes coated with antibodies against beta1 integrin, resulting in activation of the surface ligand. When exogenous pro-MMP-9 was added to PC3 cells, MMP-9 active forms were produced within 30 min by bombesin-treated cultures while control cultures expressed activated forms only after a longer time and at lower levels. MMP-9 activation required cytoskeleton integrity since this effect was abolished by cytochalasin D. Engagement of beta1 integrin caused an increased membrane-linked uPA activity which was required for MMP-9 activation. The cross talk between bombesin- and beta1-integrin-engaged signals seems to be crucial for the modulation of both membrane-linked uPA activity and MMP-9 activation and triggers complex intracellular signaling pathways requiring activation of tyrosine kinase activity, including that of src and PI3K. The beta1 integrin may be considered an important mechanism by which bombesin induces MMP-9 activation. This finding supports the idea that cellular responses to growth factors may be driven by cell-matrix interactions and stresses the role of neuroendocrine factors in prostate carcinoma progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/excr.2002.5609 | DOI Listing |
BMC Biol
January 2025
College of Bioengineering, Chongqing University, Chongqing, 400030, China.
Background: Abundant research indicates that increased extracellular matrix (ECM) stiffness significantly enhances the malignant characteristics of hepatocellular carcinoma (HCC) cells. Plectin, an essential cytoskeletal linker protein, has recently emerged as a promoter of cancer progression, particularly in the context of cancer cell invasion and metastasis. However, the responsiveness of plectin to changes in ECM stiffness and its impact on HCC progression remain unclear.
View Article and Find Full Text PDFMechanical force orchestrates a myriad of cellular events including inhibition of axon regeneration, by locally activating the mechanosensitive ion channel Piezo enriched at the injured axon tip. However, the cellular mechanics underlying Piezo localization and function remains poorly characterized. We show that the RNA repair/splicing enzyme Rtca acts upstream of Piezo to modulate its expression and transport/targeting to the plasma membrane via Rab10 GTPase, whose expression also relies on Rtca.
View Article and Find Full Text PDFBalkan Med J
January 2025
Department of Acupuncture, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310022, China.
Background: Breast cancer (BC) is the most prevalent solid cancer affecting women's health globally. Matrine (MAT), a traditional Chinese herb, has exhibited antitumor effects against BC. However, its mechanism of action, particularly whether it involves the control of cell proliferation and epithelial-mesenchymal transition (EMT), remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Department of General Surgery, XiangYa Hospital Central South University, No. 87 XiangYa Road, Changsha, 410008, Hunan, China.
Papillary thyroid cancer (PTC) is often characterized by indolent behavior, small tumors with slow cell proliferation and a tendency to metastasize to cervical lymph node simultaneously, and the molecular mechanisms underlying that remain poorly understood. In this study, FN1 was the hottest gene of PTC and distinctive expression in PTC cells. FN1 deficiency severely inhibited the p53 signaling pathway, especially cyclin proteins, resulting in increased cell growth but hampered invasion.
View Article and Find Full Text PDFNat Immunol
January 2025
Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA.
We performed a systems vaccinology analysis to investigate immune responses in humans to an H5N1 influenza vaccine, with and without the AS03 adjuvant, to identify factors influencing antibody response magnitude and durability. Our findings revealed a platelet and adhesion-related blood transcriptional signature on day 7 that predicted the longevity of the antibody response, suggesting a potential role for platelets in modulating antibody response durability. As platelets originate from megakaryocytes, we explored the effect of thrombopoietin (TPO)-mediated megakaryocyte activation on antibody response longevity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!