Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing.

Cell

Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.

Published: October 2002

Ribosome recycling factor (RRF) disassembles posttermination complexes in conjunction with elongation factor EF-G, liberating ribosomes for further rounds of translation. The striking resemblance of its L-shaped structure to that of tRNA has suggested that the mode of action of RRF may be based on mimicry of tRNA. Directed hydroxyl radical probing of 16S and 23S rRNA from Fe(II) tethered to ten positions on the surface of E. coli RRF constrains it to a well-defined location in the subunit interface cavity. Surprisingly, the orientation of RRF in the ribosome differs markedly from any of those previously observed for tRNA, suggesting that structural mimicry does not necessarily reflect functional mimicry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0092-8674(02)00938-8DOI Listing

Publication Analysis

Top Keywords

ribosome recycling
8
recycling factor
8
directed hydroxyl
8
hydroxyl radical
8
radical probing
8
orientation ribosome
4
factor ribosome
4
ribosome directed
4
probing ribosome
4
rrf
4

Similar Publications

Microbiological datasets and associated environmental parameters from the French soil quality monitoring network (RMQS) offer an opportunity for long-term and large-scale soil quality monitoring. Soils supply important ecosystem services e.g.

View Article and Find Full Text PDF

Recycling of Uridylated mRNAs in Starfish Embryos.

Biomolecules

December 2024

Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan.

In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation.

View Article and Find Full Text PDF

Substrate preference triggers metabolic patterns of indigenous microbiome during initial composting stages.

Bioresour Technol

January 2025

Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China. Electronic address:

Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages.

View Article and Find Full Text PDF

Cargo hitchhiking autophagy - a hybrid autophagy pathway utilized in yeast.

Autophagy

January 2025

Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.

Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, is a valuable model organism for deciphering molecular details that define macroautophagy pathways.

View Article and Find Full Text PDF

Millions of tons of polyethylene terephthalate (PET) are produced each year, however only ~30% of PET is currently recycled in the United States. Improvement of PET recycling and upcycling practices is an area of ongoing research. One method for PET upcycling is chemical depolymerization (through hydrolysis or aminolysis) into aromatic monomers and subsequent biodegradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!