Formation of a new crystalline silicate structure by grafting dialkoxysilyl groups on layered octosilicate.

J Am Chem Soc

Department of Applied Chemistry, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan.

Published: October 2002

AI Article Synopsis

  • Dialkoxydichlorosilanes react with silanol groups in layered silicates to form new crystalline silicate structures with five-membered rings.
  • The reaction occurs almost completely, leading to significant structural changes in the silicate layers.
  • This process offers a new method for designing and constructing unique silicate frameworks using a gentle chemical approach.

Article Abstract

Dialkoxydichlorosilanes ((RO)2SiCl2, R = alkyl) react almost completely with interlayer silanol groups in a layered silicate octosilicate to create a new crystalline silicate structure consisting of new five-membered rings arranged regularly on both sides of the silicate layers. The introduction of dialkoxysilyl groups to the interlamellar region of layered silicates with regular reaction sites provides a new methodology for the design and construction of novel crystalline silicate frameworks by a soft chemical route.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja027512tDOI Listing

Publication Analysis

Top Keywords

crystalline silicate
12
silicate structure
8
dialkoxysilyl groups
8
groups layered
8
silicate
5
formation crystalline
4
structure grafting
4
grafting dialkoxysilyl
4
layered octosilicate
4
octosilicate dialkoxydichlorosilanes
4

Similar Publications

Enhanced mechanical properties of alkali-activated dolomite dust emulsified asphalt composites.

Sci Rep

December 2024

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.

The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.

View Article and Find Full Text PDF

Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.

Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.

View Article and Find Full Text PDF

β-CaSiO based glass-ceramics are among the most reliable materials for electronic packaging. However, developing a CaSiO glass-ceramic substrate with both high strength (>230 MPa) and low dielectric constant (<5) remains challenging due to its polycrystalline nature. The present work has succeeded in synthesizing single-crystalline β-CaSiO for a high-performance glass-ceramic substrate.

View Article and Find Full Text PDF
Article Synopsis
  • - Nanoscale aluminosilicate minerals are used in various fields such as catalysis, environmental cleanup, and medicine.
  • - The study introduces a method called reactive laser ablation in liquid (RLAL) to create these nanominerals, where changing the pH and base used alters their characteristics.
  • - Different additives like ammonia and potassium hydroxide lead to distinct structures and compositions of the nanominerals, showcasing the versatility of RLAL for customizing materials for specific uses.
View Article and Find Full Text PDF
Article Synopsis
  • PMMA materials are prone to microbial growth, leading to potential oral infections in patients, which prompted a study using montmorillonite clay (MMT) combined with antimicrobial agents like chlorhexidine (CHX) and metronidazole (MET) to improve resistance.
  • The researchers created three groups of PMMA samples—control (no nanoparticles), MMT/CHX, and MMT/MET—and tested their mechanical properties and antimicrobial effectiveness against bacteria such as Enterococcus faecalis and Porphyromonas gingivalis.
  • Results showed that MMT/CHX maintained PMMA’s mechanical strength while exhibiting antibacterial properties, whereas MMT/MET negatively impacted strength, leading to the conclusion that MMT/CHX is the
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!